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Abstract

Colonic microbiota ferment non-absorbed dietary fiber to produce prodigious amounts of short chain fatty acids (SCFAs)
that benefit the host through a myriad of metabolic, trophic, and chemopreventative effects. The chemopreventative
effects of the SCFA butyrate are, in part, mediated through induction of p21 gene expression. In this study, we assessed the
role of microRNA(miRNA) in butyrate’s induction of p21 expression. The expression profiles of miRNAs in HCT-116 cells and
in human sporadic colon cancers were assessed by microarray and quantitative PCR. Regulation of p21 gene expression by
miR-106b was assessed by 39 UTR luciferase reporter assays and transfection of specific miRNA mimics. Butyrate changed
the expression of 44 miRNAs in HCT-116 cells, many of which were aberrantly expressed in colon cancer tissues. Members of
the miR-106b family were decreased in the former and increased in the latter. Butyrate-induced p21 protein expression was
dampened by treatment with a miR-106b mimic. Mutated p21 39UTR-reporter constructs expressed in HCT-116 cells
confirmed direct miR-106b targeting. Butyrate decreased HCT-116 proliferation, an effect reversed with the addition of the
miR-106b mimic. We conclude that microbe-derived SCFAs regulate host gene expression involved in intestinal homeostasis
as well as carcinogenesis through modulation of miRNAs.
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Introduction

Most human sporadic colon cancers develop gradually as accu-

mulating alterations in gene expression transform normal colonic

epithelium to adenocarcinoma. This process involves an interplay

between genetic and environmental factors, the latter supported by

the epidemiological association between increased incidence of

colorectal cancers and factors such as increased longevity,

exposure to carcinogens, and diets in highly industrialized

countries [1]. Among the proposed dietary risk factors is low fiber

content, which may lower the bioavailability of short chain fatty

acids (SCFAs) that are formed by microbial anaerobic fermenta-

tion of dietary fiber [2]. SCFAs such as acetate, proprionate, and

butyrate are produced in prodigious amounts and are the most

abundant anions in colonic luminal fluid and feces [3]. These

microbial products not only provide an important source of energy

to the colonic epithelium, but also have widespread trophic effects

that include regulation of host genes involved in maintenance of

intestinal homeostasis [4].

In undifferentiated, highly proliferative malignant cells, butyrate

inhibits proliferation and induces differentiation through a variety

of mechanisms including alterations in DNA methylation, selective

inhibition of histone phosphorylation and histone deacetylation

(HDAC), and modulation of intracellular kinase signaling [5–7]. In

a human colonic epithelial cell line (HT29), 221 butyrate

responsive genes involved in proliferation, differentiation, and

apoptosis were identified [6]. Amongst the genes altered by

butyrate treatment were many involved in cell cycle regulation,

such as the cyclin dependent kinase inhibitor p21, GADD45A,

and PTEN [6].

Under normal conditions, proliferation is tightly regulated

through the action of cyclins, cyclin dependent kinases (CDKs),

and CDK inhibitors which regulate the transitions from G1 to S

phase and G2 to mitosis and act as checkpoints to prevent

replication if DNA is damaged [8]. In response to signals

indicating DNA damage, p21 and p27 bind to cyclin-CDK

complexes and induce cell cycle arrest [8,9]. However, in cancer,

this regulated process of cell division and growth is lost. For

instance, loss of function of the G1 checkpoint cyclin dependent

kinase inhibitor p21 has been linked to carcinogenesis and p21 loss

is observed in 79% of colon cancer tumors by immunohistochem-

istry [10,11].

Butyrate induces p21 gene transcription via a p53 independent

pathway involving non-competitive inhibition of HDAC [12–14].

However, the possibility that some of butyrate’s actions on p21

gene expression might be mediated through miRNA-dependent

translational mechanisms has not been previously explored.

HDAC inhibitors have recently been studied as a new group of
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anti-cancer epigenetic treatment tools, and a HDAC inhibitor,

suberoylanilide hydroxamic acid (SAHA), is FDA approved for the

treatment of cutaneous T cell lymphoma [15]. Furthermore,

HDAC inhibitors have been implicated in miRNA regulation in

multiple types of malignancies. Treatment of the breast cancer cell

line SKBr3 with the hydroxamic acid HDAC inhibitor LAQ824

led to significant changes in ,40% of the cell’s expressed miRNAs

[16]. SAHA treatment of the human lung carcinoma cell line

A549 led to significant alterations in the expression of 64 miRNAs

[17]. The influence of the HDAC inhibitor and microbial product

butyrate on miRNA expression in colon cancer tissues has not

been investigated.

miRNAs are ,22 nucleotide, non-coding RNAs that play an

important role in regulating cell proliferation, apoptosis, and

differentiation [18]. Greater than 1000 human miRNAs have been

identified, and most are believed to target hundreds of genes [19].

Dysregulation of miRNA expression can contribute to carcino-

genesis by increasing proto-oncogene expression or down-

regulating tumor suppressors [20]. For example, miRNAs regulate

many key proteins in the signaling pathways of colorectal cancer,

e.g. the miR-106b family reduces p21 expression and affects cell

cycle progression [21–23]. Amongst the miR-106b predicted

targets, silencing of p21 with siRNA most closely phenocopies

miR-106b gain of function [22].

In this study, we hypothesized that the anti-cancer effects of the

microbe derived SCFA butyrate may be mediated in part via

changes in miRNA expression. We performed miRNA microarray

studies on human colon cancer HCT-116 cells treated with

butyrate and found significant alterations in miRNA profiles,

including decreased expression of the miR-106b family. miRNA

microarray analysis of sporadic-type human colon cancers found

increased expression of the miR-106b family. Butyrate was found

to induce p21 expression, which was associated with a significant

decrease in cell proliferation. The addition of a miR-106b mimic

reversed the increased p21 expression and decreased cell

proliferation induced by butyrate. These findings have uncovered

a unique mechanism of microbial interaction with host gene

expression that involves alterations of miRNA profiles to restrain

cell cycling and inhibit colon cancer cell proliferation.

Materials and Methods

Ethics Statement
Surgical human colonic biopsies were obtained from colon

cancer patients at the University of Chicago Medical Center under

a protocol approved by the Institutional Review Board. Written

informed consent was obtained prior to the collection of tissue

specimens. All clinical investigations using human subjects were

conducted according to the principles expressed in the Declaration

of Helsinki.

Cell Culture
Human HCT-116 colon cancer cells were acquired from ATCC.

Cells were grown at 37uC in high glucose DMEM medium

(Invitrogen) containing 10% (vol/vol) fetal bovine serum, 50 mg/ml

L-glutamate, 50 mg/ml streptomycin, and 50 U/ml penicillin. Cells

were treated with 1–2 mM butyrate for 24 to 48 hours prior to

harvest for each individual assay. Cells were rinsed twice and

scraped into ice-cold phosphate buffered saline (PBS), pelleted

(14,000 g620 sec), then lysed for RNA and protein extraction.

Human colonic biopsies
Surgical human colonic biopsies from tumor tissue and

surrounding normal appearing colonic mucosa (at least 5 cm

away the tumor border) were obtained by a colorectal surgeon.

After removal, biopsies were immediately placed on ice and rinsed

in ice-cold PBS prior to cell lysis for RNA extraction.

miRNA microarray
Total RNA was extracted from HCT-116 cells and human

colonic tissue samples using the mirVanaTM miRNA Isolation Kit

(Ambion) according to the manufacturer’s protocol. HCT-116 cell

miRNA was analyzed using the miRCURY LNATM microarray

v.11.0 (Exiqon) that contains capture probes targeting all miRNAs

for human, mouse, or rat registered in the miRBase version 13 at

the Sanger Institute. All samples were pooled to create a common

reference. One mg total RNA from each sample and the pooled

common reference was labeled using the miRCURYTM LNA

Array power labeling kit (Exiqon, Denmark). The Hy3TM-labeled

samples and a Hy5TM-labeled reference RNA sample were mixed

pair-wise and hybridized to the miRCURYTM LNA arrays. The

microarray slides were scanned using the Agilent G2565BA

Microarray Scanner System (Agilent Technologies, Inc., USA)

and the image analysis was carried out using the ImaGene 8.0

software (BioDiscovery, Inc., USA). The quantified signals were

background corrected (Normexp with offset value 10) and

normalized using the global Lowess (LOcally WEighted Scatter-

plot Smoothing) regression algorithm [24]. The data is expressed

as the normalized log2 transformed Hy3/Hy5 ratio.

In a similar fashion, human colonic tissue miRNAs were

analyzed using mirVana miRNA Bioarrays v.2 (Ambion), which

utilizes version 8.0 of the miRBase sequence database. The

samples were labeled with the mirVana miRNA labeling kit and

hybridized to the miRNA bioarrays per the manufacturer’s

instructions. The arrays were scanned using the GenePix4000B

in the University of Chicago Functional Genomics Core Facility.

A total of 12 miRNA profiles were generated from 6 paired

colonic tissue samples.

Real-time PCR for miRNAs
Total RNA was extracted from pelleted HCT-116 cells by

Trizol (Invitrogen, Grand Island, NY) according to the manufac-

turer’s instructions. Complementary DNA was synthesized from

total RNA samples extracted from HCT-116 cells or human colon

tissues using the NCodeTM miRNA First-Strand cDNA Synthesis

Kit (Invitrogen). Real-time PCR was performed with an iCycler

(Bio-Rad) using the iQSYBR Green PCR supermix (Bio-Rad) with

miRNA specific primers and a universal qPCR primer according

to the manufacturer’s protocol for the NCode Kit (Table S1). The

two-step quantification cycling protocol (45 cycles of 95uC for 15

seconds and then 60uC for 15 seconds) was used. The Ct value is

defined as the cycle number at which the fluorescence crosses a

fixed threshold above the baseline. A small nucleolar RNA,

RNU48, was measured as endogenous control [25]. For a relative

quantification, fold changes were measured using the DDCt

method. For each sample, the Ct value of each miRNA was

measured and compared to RNU48 as DCt, (DCt = Ct miRNA –

Ct RNU48). The fold change of miRNA in experimental samples

relative to control samples was determined by 22DDCT, where

DDCt = DCt Unknown –DCt Control [26].

Real-time PCR for p21 mRNA
Total RNA was extracted from pelleted HCT-116 cells with

Trizol. Complementary DNA was synthesized using SuperScript

III (Invitrogen) and a random hexonucleotide primer. The sense

and antisense primers for p21 (CDKN1A, NM_000389.3) are: 59-

TCACTGTCTTGTACCCTTGTGCTT-39 and 59- AGAAAT-

CTGTCATGCTGGTCTGCC-39; for GAPDH: 59-GGCAAA-
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TTCAACGGCACAGT-39 and 59-AGATGGTGATGGGCTT-

CCC-39. Real-time PCR was performed with an iCycler using

iQSYBR Green PCR supermix (Bio-Rad). For each sample, the

Ct value of p21 mRNA was measured and compared to the

GAPDH endogenous control as DCt, (DCt = Ctp21 – Ct GAPDH).

The fold change of miRNA in experimental samples relative to

control samples was determined by 22DDCT.

Western Blot
Pelleted HCT-116 cells were homogenized in 10 mM Tris,

pH 7.4, 5 mM MgCl2, complete protease inhibitor cocktail

(Roche Molecular Biochemicals), 50 U/ml DNAse (Amersham),

and 50 U/ml RNAse (Ambion). Protein was quantified using the

bicinchoninic acid method. Protein was solubolized in 3X

Laemmli stop solution by heating to 65uC for 10 minutes.

Twenty microgram protein samples were separated by SDS-

PAGE and transferred to polyvinylidene difluoride (PVDF)

membranes in 25 mM Tris, pH 8.8; 192 mM glycine; 15% vol/

vol methanol. Membranes were blocked with 5% wt/vol non-fat

dry milk in tween-tris buffered saline (TTBS). Primary antibodies,

specific for p21 (BD Bioscience), Hsc70 (SPA815; Stressgen) and b-

actin (Cell Signaling), were added and incubated overnight at 4uC.

Membranes were washed with TTBS, incubated with horseradish

peroxidase-conjugated species-appropriate secondary antibodies

(Jackson Immunoresearch, West Grove, PA) for 1 hour at room

temperature, and developed using an enhanced chemiluminescence

system (Supersignal; Pierce, Rockford, IL).

Quantification of images was done by scanning densitometry

using NIH Image J 1.54 software (National Institutes of Health,

Bethesda, Maryland).

Cell Proliferation Assay
Cell proliferation was measured using the WST-1 reagent (Roche

Applied Science) according to the manufacturer’s protocol. HCT-

116 cells were cultured on a 96 well flat-bottom plate. After reaching

50% confluence, wells were treated with the indicated concentration

of butyrate for 24 hrs. Plates were read on a microplate reader at

450 nm before and 45 minutes after adding the WST-1 reagent.

The reference wavelength was 650 nm. Cell proliferation rates were

calculated according to the manufacturer’s protocol.

Cell transfection with miRNA
TransIT-LT1 (Mirus, WI) transfection reagent was used to

transfect HCT-116 cells with an engineered miR-106b (Ambion’s

Pre-mir MiRNA Precursor Molecules) according to the manufac-

turer’s protocol. A control miRNA (miR-C), with identical GC

content but no sequence homology to miR-106b, was used as a

control. Cells were transfected for 48 hours prior to harvest.

Luciferase Reporter Assays
Modified pGL3 constructs with the p21 39UTR downstream of

the firefly luciferase coding sequence were a generous gift from Dr.

V. Narry Kim of the Department of Biological Sciences, Seoul

National University [27]. Six hours after butyrate treatment,

HCT-116 cells were transiently transfected with modified pGL3

constructs and pRL-TK plasmids (Renilla luciferase driven by

thymidine kinase promoter, E2241, Promega) using the TransIT

LT-1 transfection reagent. Cells were harvested by shaking in

500 ml lysis buffer (Promega). Firefly and Renilla luciferase activities

in the lysate were determined in triplicate with a Dual-Luciferase

Reporter assay system, according to the manufacturer’s instruc-

tions (Promega). Firefly luciferase activity was normalized to Renilla

luciferase activity.

Statistical Analysis
Results are presented as mean 6SEM for the indicated number

of experiments. The results of multiple experiments were analyzed

by student’s t-test or ANOVA using Bonferroni correction for

multiple comparisons.

For the miRNA arrays, a two-tailed T-test calculated between

the sample and reference groups identified miRNAs with p-values

lower than 0.05. These miRNAs were then chosen for further

study with RT-PCR.

Results

Butyrate alters miRNA expression in human colon cancer
HCT-116 cells, including members of the miR-106b family

To study the effects of butyrate on miRNA expression in colonic

cancer cells, expression profiles of miRNAs in butyrate-treated

HCT-116 cells were measured using a microarray. Vehicle-treated

HCT-116 cells were analyzed as a control. Forty-four miRNAs

demonstrated significant changes in expression in response to

butyrate treatment. The changes in expression of 13 of the 26

miRNAs that decreased and 5 out of the 18 miRNAs that increased

were confirmed using real-time, quantitative PCR (Figure S1).

Thirty-one of the 44 miRNAs with changes in expression are shown

in the heat map on the left panel of Figure 1A. Multiple members

of the miR-17-92a, miR-18b-106a, and miR-25-106b clusters were

significantly decreased in response to butyrate.

Expression levels of these miRNAs were also assessed in human

sporadic colon cancers and surrounding normal appearing colon by

microarray and are shown in the right panel of Figure 1A. The

miRNAs decreased in butyrate-treated HCT-116 cells were

dramatically increased in tumor tissues as compared to normal

controls. miRs-17, -20a, -20b, -93, -106a and -106b were all

decreased in response to butyrate treatment. These miRNAs share

the same seed region sequence and thus target the same binding

sites in the 39UTRs of target mRNAs. Using real time PCR, we

confirmed that butyrate down-regulated these miRNAs in HCT-

116 cells (Figure 1B). We also confirmed that these miRNAs were

highly over-expressed in human colon cancer samples (Figure 1C),

suggesting that some anti-cancer effects of butyrate are mediated by

suppressing the miRNAs that are upregulated in colon cancer.

miR-106b inhibits butyrate-induced p21 protein
expression

Prior studies showed that the 39 UTR of p21, which regulates cancer

cell proliferation, contains two binding sites for the miR-17 – 106b seed

sequence (Figure 2A) and is inhibited by these miRNAs in various

types of cancer [reviewed in 13–15, 22]. We, therefore, analyzed the

effects of butyrate and a miR-106b mimic on p21 mRNA and protein

levels in HCT-116 cells. As shown in Figure 2B and 2C, butyrate

increased p21 protein expression four fold after 24 hours of treatment.

An exogenous miR-106b mimic dampened butyrate-induced p21

protein expression as compared with cells treated with butyrate alone

whereas control miRNA molecules had no effect on p21 expression.

To determine the effect of butyrate and miRNAs on p21 gene

expression, cellular p21 mRNA levels were measured by real-time

PCR (Figure 2D). Butyrate induced a 3.6-fold increase in p21

mRNA abundancy. In contrast, the miR-106b mimic had no

effect on p21 mRNA expression.

The 39UTR of p21 mediates translational regulation by
butyrate and miR-106b

To investigate the effect of miR-106b on translational regulation of

p21 expression, HCT-116 cells were transiently transfected with

Butyrate Regulates p21 through miRNAs
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modified luciferase reporter vectors containing either the wild type

p21 39UTR or p21 39UTRs containing mutations in either one or

both of the miR-106b binding sites (Figure 3A). Firefly luciferase

expression was used to assess cis regulation via the p21 39 UTR. The

pRL-TK vector expressing Renilla luciferase was co-transfected to

control for transfection efficiency. Under basal conditions, mutations

in the individual miR-106b target regions in the p21 39UTR at

nucleotides 468-474 and nucleotides 1148-1154 resulted in a 28%

and 26% increase in luciferase activity respectively (Figure 3B).

Furthermore, mutations in both miR-106b target regions resulted in

a 57% increase in luciferase activity, suggesting that both binding sites

mediate miRNA inhibition of basal p21 expression in cancer cells.

Butyrate stimulated luciferase activity 85% over control in

HCT-116 cells transfected with the luciferase containing p21 39

UTR vector (Figure 3C). Butyrate’s effects on luciferase

expression were reversed by the addition of exogenous miR-

106b mimics, but not control miRNA molecules (miR-C).

Furthermore, the luciferase activity of HCT-116 cells transfected

with the chimeric vector containing both mutant miR-106b target

sites was not altered with butyrate treatment or with butyrate in

the presence of exogenous miR-106b.

Butyrate’s effect on cell proliferation is inhibited by miR-
106b

Since p21 inhibits cell cycle progression, we examined the role of

miR-106b on butyrate’s anti-proliferative effects. HCT-116 cells

were treated with multiple dilutions of butyrate for 24 hours and a

WST-1 proliferation assay was performed. As shown in Figure 4A,

butyrate dose-dependently inhibited cell proliferation. The anti-

proliferative butyrate concentrations were in the physiological range

of 0.5 to 20 mM [28,29]. Cells transfected with exogenous miR-

106b or control for 24 hrs prior to 2 mM butyrate exposure were

also analyzed (Figure 4B). The butyrate-induced inhibition of cell

proliferation was reversed by the addition of miR-106b mimic

molecules in a dose-dependant manner (Figure 4B). In contrast,

control miRNA molecules (miR-C) showed no effect on the

butyrate-induced inhibition of cell proliferation.

Discussion

In this study, we identify, for the first time, an important growth

regulatory role for colonic epithelial miRNAs in mediating the

effects of the microbe-derived short chain fatty acid butyrate on

Figure 1. Butyrate treatment of HCT116 cells alters expression of miRNAs aberrantly expressed in human colon cancers. A) miRNA
microarray profiles were performed on RNA extracted from HCT-116 cells treated with vehicle or 1 mM butyrate and human colon tissues from
patients with sporadic colonic cancer and adjacent normal-appearing tissue. Data was normalized using the global Lowess regression algorithm and
is expressed as log base 2 transformed ratios of the sample signal to the control reference pool signal. Heat maps are represented. The red color in
the heat map represents increased expression as compared to the pooled reference control, and green represents decreased expression as compared
to the pooled control. Changes in expression of the miR-17 – 106b family were confirmed by real-time PCR in B) HCT-116 cells and C) human colon
tissues. Results are means 6 SE, n = 4. * indicates p,0.05 for sample as compared to control.
doi:10.1371/journal.pone.0016221.g001
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host gene expression. Interestingly, in HCT-116 cells, butyrate

suppressed many of the same miRNAs increased in human colon

cancers. One of these miRNAs, miR-106b, was found to target

p21. Butyrate and miR-106b treatment of a p21 39UTR luciferase

reporter construct in HCT116 cells indicates that butyrate-

stimulated p21 expression is translationally inhibited in part by

miR-106b. This partial inhibition by miR-106b confirms previous

reports that butyrate also regulates p21 expression via a miRNA

independent mechanism, through its inhibition of HDAC

[7,13,14]. We propose that the microbial product butyrate

regulates the cell cycle through both epigenetic and translational

regulation through its dual role as a HDAC inhibitor and inhibitor

of miR-106b expression (Figure 5).

These results have important implications for intestinal

homeostasis and carcinogenesis. These data would suggest that

these miRNAs play a role in colonic carcinogenesis and that their

reduction by butyrate is an important mechanism of its anti-cancer

effects. Six of these miRNAs are in the same miRNA family (miR-

17, miR-20a, miR-20b, miR-93, miR-106a, and miR-106b), share

an identical seed sequence, and thus target the same binding sites

in the 39UTRs of target mRNAs. Therefore, suppression of their

target genes during the carcinogenic process might represent a

patterned cell response to promote cell proliferation and/or

maintenance of the undifferentiated state.

Because many miRNAs are also located in intronic regions of

encoding genes, the miRNA response is likely coordinated with

transciptionally activated genes that contribute to the overall

process of carcinogenesis. As an example pertinent to our findings,

the miR-106b-25 polycistron is located within intron 13 of the

MCM7 gene on chromosome 7q22.1 [23]. MCM7 (minichromo-

some maintenance protein 7) regulates DNA replication during

the S phase. In quiescent cells, human MCM7 mRNA levels are

almost undetectable, but its expression is induced as cells enter the

cell cycle. The MCM7 promoter has three E2F sites, three GC

Figure 2. Butyrate-induced p21 protein expression is inhibited by miR-106b. A) Schematic of common seed regions in the miR-17 – 106b
family that target the p21 39UTR at two sites. HCT-116 cells were treated with butyrate (2 mM) or vehicle and were transfected with miR-106b mimic
or control miRNA (miR-C) for 24 hours prior to harvest. B) Western blots for p21, b-actin and Hsc70 are shown, and are representative of 4 individual
experiments all with similar results. C) Densitometry results of Western blots of p21 normalized to b-actin. D) p21 mRNA abundance was analyzed by
real-time PCR. Results are means 6 SE, n = 4. * indicates p,0.05 compared to basal. # indicates p,0.05 compared to control.
doi:10.1371/journal.pone.0016221.g002
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boxes, and an E box [30]. In hepatocellular carcinoma (HCC), the

expression of the miR-106b precursor strongly correlates with

MCM7 expression, indicating that the miR-106b-25 polycistron is

coordinately transcribed under the influence of the MCM7

promoter. High levels of expression of the transcription factor

E2F1 in HCC also correlated with increased miR-106b expression

[31]. In gastric cancer cells, E2F1 also appears to regulate miR-

106b-25 expression in parallel with increases in MCM7 expression

[32]. In mouse fibroblasts transformed with the EIA and Ras

oncogenes, butyrate decreases E2F1 transcripts and protein as well

as promoter activation [33]. Thus, butyrate might exert its effect

on miR-106b expression via decreased E2F1 expression, though

further studies in HCT-116 cells are needed to examine this

possibility.

As stated previously, dysregulation of miRNA expression can

influence carcinogenesis when the miRNA targets are tumor

suppressors or oncogenes. While treatment with miR-106b leads

to decreased p21 protein expression, p21 mRNA levels do not

change, which is consistent with prior reports that miR-106b

regulates p21 through translational inhibition rather than mRNA

stability [32]. Although miR-106b regulation of p21 expression has

been described in many cell types, there is conflicting data on the

mechanism of this interaction. In human mammary epithelial cells

and normal lung fibroblasts, miR-106b decreased the p21 mRNA

by about 40% [22]. In contrast, in HCC, p21 expression showed

no correlation with the expression of the miR106b-25 cluster, and

did not seem to be a target of these miRNAs in this cell type [31].

In a human gastric carcinoma derived cell line, miR-106b

repressed p21 protein expression, but did not cause a significant

change in p21 mRNA levels [32].

In summary, we have discovered a novel mechanism of action

for butyrate’s anti-cancer effects involving modulation of miRNA

Figure 3. miR-106b regulates p21 translation via two target
sites in the 39UTR. A) Schematic of the luciferase reporter constructs
containing the p21 mRNA 39UTR, which includes two binding sites for
the miR-17-106b family. Mutations were generated in these miR-106b
target sites. HCT-116 cells were transiently co-transfected with firefly
luciferase pGL3 vectors containing the wild type or mutated p21 39UTR
and pRL-TK Renilla luciferase control vector. Cells were also treated with
butyrate (2 mM) or vehicle and miR-106b mimic or control miRNA
molecules (miR-C). Cells were harvested for luminescence measurement
48 hrs after transfection. B) Basal luciferase expression of reporter
constructs with wild type or mutated p21 39UTR. * indicates p,0.05
compared to p21 39UTR C) Luciferase expression in cells after butyrate
and miRNA treatment. * indicates p,0.05 compared to control. Results
are means 6 SE, n = 4.
doi:10.1371/journal.pone.0016221.g003

Figure 4. miR-106b reverses butyrate’s anti-proliferative
effects. HCT-116 cell proliferation rate was measured with the WST-1
proliferation kit. A) HCT-116 cells were treated with the indicated
concentration of butyrate or vehicle for 24 hrs before WST-1
measurement. * indicates p,0.05, compared to basal B) HCT-116 cells
were transfected with the miR-106b mimic or control miRNA (miR-C)
with the indicated concentrations immediately before treatment with
2 mM butyrate. Cells treated only with butyrate were analyzed as
Control. * indicates p,0.05 compared to butyrate alone. Results are
means 6 SE, n = 5.
doi:10.1371/journal.pone.0016221.g004
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profiles and translation-dependent gene expression. As one

example, butyrate induces expression of p21, a key regulatory

molecule of cell cycle arrest, by suppressing members of the miR-

106b family. Butyrate inhibition of miR-106b is also associated

with a significant decrease in cancer cell proliferation rates. The

latter is reversed by the addition of miR-106b mimics. These

findings have uncovered a unique example of microbial regulation

of host gene expression that retards cell cycling and inhibits colon

cancer cell proliferation.

Supporting Information

Figure S1 Butyrate significantly alters the expression of
forty-four miRNAs in HCT-116 cells. HCT-116 cells were
treated with 1 mM butyrate for 24 hrs. Isolated total RNA

was subjected to miRNA array hybridization. Forty-four miRNAs

demonstrated significant changes in expression in response to

butyrate treatment. Microarray data was normalized using the

global Lowess regression algorithm and is expressed as log base 2

transformed ratios of the sample signal to the control reference

pool signal. The changes in miRNA expression were confirmed

using real-time, quantitative PCR for 13 of the 26 miRNAs that

decreased and 5 of the 18 miRNA s that increased.

(TIF)

Table S1 Primers Used for Quantitative Real-Time
Polymerase Chain Reactions. Complementary DNA was

synthesized from total RNA samples extracted from HCT-116

cells or human colon tissues using the NCodeTM miRNA First-

Strand cDNA Synthesis Kit (Invitrogen). Real-time PCR was

performed with an iCycler (Bio-Rad) using the iQSYBR Green

PCR supermix (Bio-Rad) with miRNA specific primers consisting

of the entire sequence of the miRNA of interest and a universal

qPCR primer according to the manufacturer’s protocol for the

NCode Kit.

(DOC)
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