
Inferring Network Connectivity by Delayed Feedback
Control
Dongchuan Yu1,2*, Ulrich Parlitz3

1 Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Nanjing, Jiangsu, China, 2 Research Center for Learning

Science, Southeast University, Nanjing, Jiangsu, China, 3 Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany

Abstract

We suggest a control based approach to topology estimation of networks with N elements. This method first drives the
network to steady states by a delayed feedback control; then performs structural perturbations for shifting the steady states
M times; and finally infers the connection topology from the steady states’ shifts by matrix inverse algorithm (M~N) or ‘1-
norm convex optimization strategy applicable to estimate the topology of sparse networks from M%N perturbations. We
discuss as well some aspects important for applications, such as the topology reconstruction quality and error sources,
advantages and disadvantages of the suggested method, and the influence of (control) perturbations, inhomegenity,
sparsity, coupling functions, and measurement noise. Some examples of networks with Chua’s oscillators are presented to
illustrate the reliability of the suggested technique.
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Introduction

The research on complex networks [1–4] pervades almost all

biological sciences, from gene network [5,6] to system biology [7],

from physiology [8–10] to psychology [11], to name just a few.

Recent developments [12] in the quantitative analysis of complex

networks, based largely on graph theory, have been rapidly

translated to studies of brain networks. Mathematically, brain

networks [12] can be described as graphs that are composed of

nodes (vertices) denoting neural elements (neurons or brain

regions) that are linked by edges representing physical connections

(synapses or axonal projections) or functional ones based on

imaging data. Current studies of brain networks focus on

understanding the relation between network connectivity and

function [12]. It turns out that small perturbations of structural

and functional connectivity may dramatically change the function

of networks and even lead to the occurrence of cognitive

dysfunctions. In the context of brain functional networks based

on imaging data [12], for example, one may quantify the

functional connectivity between brain regions by analyzing the

topological parameters (such as clustering coefficient, connectivity

distribution, and average network distance) of the functional

network, and the change of the topological properties has been

considered as the pathophysiological mechanism of cognitive

dysfunctions. In order to infer the emergent function of a real

network, one first has to identify the underlying (functional and

structural) connection topology.

Thus far a few methods have been developed for topology

estimation using tools such as Pearson’s correlation [13–15], phase

synchronization [16], Bayesian estimation [17,18], identical

synchronization [19], perturbation [20–22], compressive-sensing

[23,24], direct reconstruction [25,26], or linear state feedback

control [27–29].

The Pearson’s correlation method [13–15] is based on the

following assumption: If the value of Pearson’s correlation

coefficient between two brain imaging time-series, representing

the activities of two brain regions of interest, exceeds a threshold,

then there exists a linkage between the two brain regions;

otherwise, there is no connection between them. However, how

to determine suitable thresholds is still an open problem and the

assumption that correlation implies connections (or causality) is

logically not sound [30,31]. This problem also occurs with the

phase synchronization approach [16] that depends on the

following assumption: If the phase synchronization degree (or

index) between two brain imaging time-series is above a threshold,

then there exists a linkage between the two brain regions;

otherwise, there is no connection between them. Again, the

determination of the threshold remains a nontrivial problem.

Furthermore, how to define the phase of complex systems still

remains an open problem.

Bayesian estimation methods [17,18] have been used to

evaluate the connectivity between brain regions of interest with

imaging data, but their efficiency and feasibility depend on the

validity of the priors and the model adopted.

Network topology estimation using identical synchronization

(which is conceptually equivalent to adaptive observer) was first

developed in Ref. [19]. However, synchronization of networks

may become an obstacle of topology estimation because

synchronization leads to a situation where network connectivity

information is hidden. Therefore, one has to complete the
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estimation processing as soon as possible (before the network is

synchronous), otherwise one requires proper external perturba-

tions to shift the network out of synchronous state.

Perturbation based method [20,21] transforms the topology

estimation problem into a matrix inversion task. It has been shown

[21] that for sparsely connected networks, this matrix-inverse

problem can be solved effectively using an ‘1-norm optimization

strategy in combination with the well-known singular value

decomposition technique. The perturbation method [20,21],

however, depends on the steady-state assumption (more precisely,

it is assumed that the network to be analyzed always reaches a

stable stationary state automatically) which is a restriction for some

network systems with complex dynamical behaviors (including

chaos). When the external perturbation matrix is unknown, a

recursive strategy [22] can be used to estimate both the

perturbation and connectivity matrices.

Some authors [23,24] recently developed a so-called compres-

sive sensing method that first formulates the dynamical system of

interest as the following equation

_XX~F(X)P ð1Þ

with F(X) being a polynomial function and P being parameter

vector to be estimated, then obtains two data matrices Y~

½ _XX(t1), _XX(t2), . . . , _XX(tm)� and Z~½F(X(t1)),F(X(t2)), . . . ,F(X(tm))�,
satisfying Y~ZP, and finally estimate P by an ‘1-norm convex

optimization processing. They showed that their method is effective

to reconstruct dynamical systems [23] and network topology [24].

However, such a method requires a differential estimator that may be

sensitive to measurement noise. Furthermore, complex dynamical

systems usually cannot be described by Eq. (1), more precisely, their

dynamical equation in general is non-polynomial and does not

linearly depend on the parameters. It should be remarked that the

performance of ‘1-norm convex optimization strategy usually

becomes bad when the sparsity of networks decreases, as will be

shown below (cf. Fig. 8).

Timme’s recent work [26] analyzed the possibility of direct

topology reconstruction from dynamical trajectories. Remarkably,

the question how the parameters (e.g. sampling rate, observation

time, and external noise) influence the performance of topology

reconstruction is discussed in detail. The reliability of his method

[26] has been demonstrated clearly. As a minor drawback, his

method requires some prior knowledge about local dynamics of

each node, and a differential estimator that may be sensitive to

measurement noise.

To use the perturbation method also for networks with complex

dynamics, a linear state feedback control based method [27–29]

was suggested very recently, and can be used to estimate topology

by exploiting information obtained from the observed steady-state

responses of each node. However this method has some

limitations. For instance, one generally has to assume that all

state variables of each node are completely measurable and all

state components of each node admit an external input.

Furthermore, a high-gain feedback control will be involved in

some cases.

In brief, most of developed topology estimation methods have

their advantages and disadvantages, and thus far the topology

estimation issue remains an open problem. Here we make an effort

to remove some drawbacks of previous methods, and show that the

connection topology of complex dynamical networks can be

identified by exploiting information obtained from shifted steady

states that are stabilized by means of multiple delay feedback control

(MDFC) [32]. This control approach is combined with some

methods [21] for detecting connectivity of networks under the

assumption that a stable stationary state exists (also called steady

state assumption). However, in contrast to that work, our topology

detection method is applicable to dynamical networks with

complex dynamical behaviors (far from stationarity) and does

not depend on the steady state assumption. Furthermore, our

method is possible to be applied in a challenging scenario where

only one state variables of each node are measurable and

accessible, and does require only a little structure information

about the networks under study.

Results

Theory
We consider a network of interacting dynamical systems, given

by

_xxi~f i(xi)zC
X
j[V

aijhij(xj{xi) ð2Þ

where i [ V~f1,2, . . . ,Ng; xi~½xi,yi,zi, . . .�T [ Rn is the state

vector of the ith element (or node); f i~½fi1,fi2, . . . ,fin�T : Rn?Rn

describes the dynamics of the ith element. For simplicity we

assume that only the first components of each element are

connected to each other (a more general case will be treated

elsewhere). Here hij : R?R is a coupling function and

C~½1,0, . . . ,0�T. The topology of the network connections is

determined by the adjacency matrix A~(aij): aij~1 if there exists

a connection from the jth node to the ith node; and aij~0

otherwise. We shall show that MDFC [32] is very efficient to shift

the steady states and the steady states’ shifts enable us to uncover

the connection topology in terms of an estimation of the elements

of the matrix A~(aij).

We restrict ourselves to the case that only the coupling variables,

namely xi, can be measured (or monitored) and we add the control

term

ui~k1½xi(t{t1){xi(t)�zk2½xi(t{t2){xi(t)�{Di ð3Þ

to only the first equation of each element, where delay times t1

and t2 and control gains k1 and k2 are uniform for all elements. For

Di~0, the control signal (3) becomes the original MDFC [32].

Here we shall first use distinct Di for each element to shift the

steady states which are stabilized by MDFC and then show that the

steady states’ shifts enable us to uncover the connection topology.

Steady-state stabilization. The network system (2) under

the control signal (3) can then be rewritten in a compact form:

_XX~F(X)zk1E1(Xt1
{X)zk2E1(Xt2

{X){D ð4Þ

where X~½xT
1 ,xT

2 , . . . ,xT
N �

T
, F~½F1,F2, . . . ,FN �T, Fi(X)~f i(xi)z

C
P

j[V aijhij(xj{xi), Xt(t)~X(t{t), E1~diagf1,0, . . . ,0,1,0,

. . . ,0, . . . ,1,0, . . . ,0g, and D~½D1,0, . . . ,0,D2,0, . . . ,0, . . . ,DN ,0,

. . . ,0�T.

Assumption 1: For function F, there exists constants �i1 and

�i2 (depending on the property of function F) such that the

equation F(X)~D has at least one real solution X for any

Di [ ½�i1,�i2� for all i.

If system (2) without any perturbation has at least one

equilibrium, which usually is satisfied for most of networks, then

equation F(X)~0 has at least one real root. By using the

continuity of function F (because f i is continuous for all i), it
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follows that when constants �i1 and �i2 are close to zero, equation

F(X)~D has at least one real root. This indicates that Assumption

1 is not really a restriction in practice.

The following theorem is the foundation of topology identifi-

cation and provides conditions under which the system (4) is

locally asymptotical stable at a stationary state. Detailed discussion

about Theorem 1 can be found in Discussion Part.

Theorem 1: The system (4) (with Di [ ½�i1,�i2� for all i) is locally

asymptotical stable at a stationary state S, satisfying

F(S){D~0, ð5Þ

provided that: (i) Assumption 1 holds; and (ii) all roots of the

characteristics equation det½lI{DF(S)zk1E1(e{t1
:l{1)zk2E1

(e{t2
:l{1)�~0 have negative real parts, where DF(S): ~

(LF=LX)jX~S is the Jacobian matrix.

Proof: The existence of S satisfying Eq. (5) is straightforward if

Assumption 1 holds. Now we analyze the stability of the stationary

state S.

Let E~X{S. Then we can conclude from Eq. (4) that

_EE~F(EzS){F(S)zk1E1(Et1
{E)zk2E1(Et2

{E) ð6Þ

where Eq. (5) has been used.

Locally linearizing the above system around the origin results in

_EE~DF(S):Ezk1E1(Et1
{E)zk2E1(Et2

{E): ð7Þ

Therefore, in terms of the standard linear system theory, the

stability of the error system (7) determines by the characteristi-

cs equation det½lI{DF(S)zk1E1(e{t1
:l{1)zk2E1(e{t2

:l{1)�
~0. If all roots of the characteristics equation have negative real

parts, then the asymptotic stability of the error system (7) is

satisfied. This completes the proof.

Steady-state shifts. If proper ki, ti, and Di are chosen such

that Theorem 1 is fulfilled (see Discussion Part for further

information), then one can stabilize the steady state (x1s, . . . ,xns),
satisfying Vi

fi1(gi1,gi2, . . . ,gin)z
X
j[V

aijhij(gj1{gi1)~Di,

fij(gi1,gi2, . . . ,gin)~0, Vj~2,3, . . . ,n

ð8Þ

where xis~½gi1,gi2, . . . ,gin�T is the steady state of the ith element.

If L½fi2,fi3, . . . ,fin�T=L½gi2,gi3, . . . ,gin�T is nonsingular, then one

can conclude from the implicit function theory [33] that there

exists a mapping wi : R?Rn{1 such that

½gi2,gi3, . . . ,gin�T~wi(gi1),Vi: ð9Þ

Substituted into the first equation of Eq. (8) this yields

gi(gi1)z
X
j[V

aijhij(gj1{gi1)~Di ð10Þ

where gi(x) : ~fi1(x,wi(x)).

As will be shown below, Eq. (10) is the foundation of the

topology estimation method to be suggested, and has reduced the

original n-dimensional problem to an 1-dimensional (1D) one. It

should be remarked that Eq. (10) is satisfied, provided that (i)

Equation (8) has at least one real solution; (ii) the steady state

satisfying Eq. (8) can be stabilized by MDFC; and (iii)

L½fi2,fi3, . . . ,fin�T=L½gi2,gi3, . . . ,gin�T is nonsingular.

We now show that shifting the steady states of the network

system M times by M structural perturbations enables us to

uncover the network connectivity (where M depends on the

network size N).

For the mth perturbation, we replace the control constant Di by

DizdDm
i for each node i such that the steady states of the coupling

variables are shifted from gi1 to gi1zdgm
i1 for all i. Then the resulting

steady state response equations of the coupling variables read

gi(gi1zdgm
i1)z

X
j[V

aijhij(gj1zdgm
j1{gi1{dgm

i1)~DizdDm
i ,Vi: ð11Þ

For sufficiently small perturbations dDm
i , we approximate

hij(x)~hij(c)zh’ij(c)(x{c)zO½(x{c)2� and g(x)~g(c)zg’(c)
(x{c)zO½(x{c)2�. Subtracting Eq. (11) from Eq. (10), we then

obtain

g’(gi1)dgm
i1z

X
j[V

aijh’ij(gj1{gi1)(dgm
j1{dgm

i1)~dDm
i ,Vi: ð12Þ

Let Dm~½dgm
i1, . . . ,dgm

N1�
T

, Hm~½dDm
1 , . . . ,dDm

N �
T

, and B~(bij)
with

bij~

aijh’ij(gj1{gi1), for i=j,

g’(gi1){
P

j[V ,j=i

aijh’ij(gj1{gi1), for i~j:

8<
: ð13Þ

Then the set of equations (12) can be rewritten in a compact

form

BDm~Hm, ð14Þ

which contains N equations that restrict the N2 elements bij .

Perturbing the steady state of the network system M times, we

achieve

BLM~VM , ð15Þ

where LM~(D1, . . . ,DM ) and VM~(H1, . . . ,HM ).

To summarize the above analysis, Eq. (15) is fulfilled if and only

if: (i) Equation (8) has at least one real solution; (ii) the steady states

satisfying Eqs. (10) and (11) can be stabilized by MDFC; (iii)

L½fi2,fi3, . . . ,fin�T=L½gi2,gi3, . . . ,gin�T is nonsingular; and (iv) per-

turbations dDm
i are sufficiently small for all m.

Topology estimation using matrix inverse

algorithm. Equation (15) actually contains NM conditions

that restrict the N2 elements bij . Hence, after performing M~N
perturbations, all elements bij can be estimated by b̂bij , given by

B̂B~(b̂bij)~VNL
{1
N , ð16Þ

if the inverse of LN exists.

It follows that if all elements bij can be estimated with high

accuracy (more precisely, there exists a sufficiently small � such

that jbij{b̂bij jƒ�) , then all off-diagonal elements aij can be

Estimating Network Connectivity
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identified from Eq.(13): aij~0 when jb̂bij jƒ�; and aij~1 otherwise.

In practice, one may follow the SDTIA algorithm [28] and divide

all values jb̂bij j into two sets: I0 containing all elements jb̂bij j
corresponding to aij~0 and I1 containing all elements jb̂bij j
corresponding to aij~1, by the following steps:

Step 1. Calculate elements jb̂bij j for all i,j.

Step 2. Order (or arrange) all elements jb̂bij j in an

ascending sequence and obtain a new sequence fsig.
Step 3. The critical point sequence number ic of set I0 is

determined by the rule: si{s1§2(sic{s1),V iwic.

As clearly shown in Fig. 1 that when w1w3� with

w1~mini,j,i=j jbij j and w2~maxi,j,i=j jbij j, the distance between

sets I0 and I1 is larger than the length of set I0, and thereby one

can distinguish the sets I0 and I1 by the above steps (SDTIA

algorithm [28]) and reconstruct the network topology in terms of

an estimation of all elements of the matrix A~(aij), where the

distance between two point sets is equal to the minimal distance

between any two points which are taken from different sets, and

the length of a point set is the difference between the maximal and

minimal values in the set. Therefore, the smaller the value of � and

the bigger the value of w1, the higher the possibility of successful

topology reconstruction.
Topology estimation using ‘1-norm optimization

strategy. Topology estimation using Eq. (16) requires N
perturbations and becomes ‘‘costly’’ and less effective when the

network size N is very large. However, for sparsely connected

networks, it turns out that by using a ‘1-norm convex optimization

strategy to be shown below, we can accurately and efficiently

approximate all elements bij from Eq. (15) with M%N.

We transpose Eq. (15) and rewrite it as

LT
Mpj~qj ,Vj~1,2, . . . ,N ð17Þ

where pj and qj are the jth column vector of matrices BT and VT
M ,

respectively.

The estimated value of each pj , referred to as p̂pj , can be

determined by solving the following convex optimization problem

minp̂pj
Ep̂pjE1 subject to Eqj{LT

M p̂pjE2ƒ� ð18Þ

where � is the tolerance (in the following simulations, �~10{5),

ExE1~
P

i jxij is the ‘1-norm of vector x and ExE2
2~

P
i x2

i .

The advantage of choosing the formulation (18) is that one can

determine the network with a minimal number of connections

(each vector p̂pj will have a minimal number of nonzero elements)

and it can be solved in polynomial time with some standard

scientific softwares (e.g., Matlab toolbox CVX Ver1.1 [34]). By

this ‘1-norm convex optimization strategy, we can determine the

matrix with minimal driving connections for each node; hence we

can effectively estimate all bij for sparsely connected networks

when M%N perturbations are performed, as will be illustrated

below. Again, one may follow the SDTIA algorithm [28] (shown

above) for an effective topology reconstruction.

Topology estimation quality. Following Timme’s work

[26], we define the normalized estimation error eij of each

element bij by

eij~jb̂bij{bij j=(2bmax) ð19Þ

where b̂bij is an estimation of bij , and bmax~maxi;jfjb̂bij j; jbij jg.
We further define the estimation accuracy a [ ½0, 1� such that bij

can be identified correctly if

eijƒ1{a: ð20Þ

This implies from Fig. 1 that �~2bmax(1{a) and thereby the

topology can be estimated correctly if

g : ~
mini,j,i=j jbij j
maxi,j,i=j jbij j

w6(1{a)(1z2(1{a)) ð21Þ

where jmaxi,j,i=j jbij j{w2jƒ2bmax(1{a) and jw2jƒbmax are used.

Therefore, the bigger the values of g and a, the higher the

topology estimation accuracy. Based on the condition (21), the

minimal value of g being supported for a successful topology

reconstruction is determined by the maximal value of a satisfying

the condition (20).

The estimation accuracy of bij is crucial for topology

reconstruction, so it is of importance to quantify the estimation

quality of values bij . Here we qualify the estimation accuracy of all

non-diagonal elements bij as a whole by the variable Qa, given by

Qa~
1

N(N{1)

X
i,j,i=j

H(1{a{eij) ð22Þ

where H is the Herviside step function, i.e., H(x)~1 for x§0 and

H(x)~0 otherwise. This definition is a little bit different from

Timme’s work [26] that considered the estimation of all elements

bij . It is clear that the bigger the values of a and Qa, the higher the

estimation accuracy of all non-diagonal elements bij . Based on this

observation, we restrict ourselves and assume that an effective

network topology reconstruction is said to occur when Q0:98§0:99.

Simulation
To illustrate the above topology estimation methods, we use a

network of coupled Chua’s circuits, given by

_xxi ~{yizxi{ziz
P
j[V

aijhij(xj{xi)

_yyi ~bi1½yizl(yi){xi�,
_zzi ~bi2xizbi3zi

ð23Þ

where i~1,2, . . . ,N, l(x)~m1xz(m0zm1)(jxz1j{jx{1j)=2,

and parameters b1i, b2i, and b3i are uniformly distributed in

ranges [35.6, 35.75], [75.6, 75.75], and [1.103, 1.253], respec-

tively. Furthermore, hij(x)~sin(x) are for any i,j, so coupling

functions hij do not contain any information about the network

topology (some further discussion about coupling functions can be

found in Discussion Part). In this case, system (23) may display

complex dynamical behavior (including chaos), as illustrated in

Figure 1. The condition to ensure a successful topology
reconstruction using the SDTIA algorithm [28]. Sets I0 and I1

contain all elements jb̂bij j corresponding to aij~0 and that corresponding
to aij~1, respectively, where w1~mini,j,i=j jbij j and w2~maxi,j,i=j jbij j.
doi:10.1371/journal.pone.0024333.g001
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Fig. 2. In the following, we first illustrate the steady state

stabilization and shifts numerically. Then, based on steady state

shifts and measurement, we show two methods for topology

estimation, i.e., matrix inverse and ‘1-norm convex optimization

strategy, with estimation accuracy being quantified by Qa.

Following Ref. [32], we can determine suitable control parameter

values ki and ti by a search strategy. We numerically found that

there is a big window for the control parameters ki and ti such that

system (2) can be driven to a steady state by the MDFC (3), as

illustrated in Fig. 3 as a typical example. It is clear from Fig. 3D that

MDFC is very effective for steady state stabilization. Furthermore,

when MDFCs with distinct Di are used, the steady-state response

shift phenomenon can be observed (cf. Fig. 4 for a representative

result). Those steady state shifts are the foundation of topology

estimation, as shown above (cf. Theory Part).

When system (23) is driven to a steady state (x1s, . . . ,xns) with

xis~½gi1,gi2,g3n�T being the steady state of the ith element, then

one can easily confirm that

L½fi2,fi3�T

L½gi2,gi3�T
~

bi1(1z
dl(gi1)

gi1

) 0

0 bi3

2
4

3
5 ð24Þ

is nonsingular and

gi2

gi3

� �
~

n(gi1)

{
bi3

bi2

gi1

2
4

3
5 ð25Þ

where gi2~n(gi1) is the unique solution of equation gi2z

l(gi2)~gi1.

Therefore, Eq. (10) is fulfilled. This implies that shifting and

measuring the steady state response of the first state of each node

becomes possible for a successful topology reconstruction. In the

following, we show two methods for topology estimation, i.e.,

matrix inverse and ‘1-norm convex optimization strategy.

As a representative result using the matrix inverse algorithm (16)

for topology estimation, Fig. 5A shows the estimation error eij of

elements bij for a random directed network of interacting Chua’s

oscillators. It is clear that all elements bij have been reconstructed

effectively with Q0:98~1 (due to eijv0:02 for all i,j). With this

high (normalized) estimation accuracy of bij , one may identify all

parameters aij correctly by the SDTIA algorithm [28] (also shown

above), as illustrated in Figs. 5C–5D where the estimated jbij j (with

%) corresponding to aij~1 are bigger than that (with D)

corresponding to aij~0.

The matrix inverse method for topology reconstruction requires

N perturbations and becomes ‘‘costly’’ and less effective when the

network size N is very large. However, such a drawback for

sparsely connected networks may be relaxed by the ‘1-norm

convex optimization strategy described in Eq. (18). As typical

examples, Fig. 5B and Fig. 6B shows that an acceptable topology

estimation accuracy (i.e., Q0:98~0:9975, Q0:98~0:9954) can be

obtained when only M%N perturbations are performed.

Furthermore, the matrix inverse method may lead to wrong

conclusion in some cases due to the ill-condition problem of the

matrix inverse, as illustrated in Fig. 6A where Q0:98~0:2433,

implying a bad estimation result, is achieved. However, for sparse

networks, such a drawback may be removed by the ‘1-norm convex

optimization strategy, as shown in Fig. 6B where Q0:98~0:9954.

The question how to choose control parameters becomes crucial

for steady state shifts which are the foundation for topology

reconstruction. For simplicity, in the above simulation, we let

Di~0 and choose parameters dDi [ ½{0:3,0:3� randomly. We

now analyze the influence of perturbation parameters dDi on

topology estimation. Figure 7 summarizes our results and shows

that the estimation accuracy Q0:98 using the ‘1-norm convex

optimization strategy changes with the node-pair connection

possibility p [ f0:1,0:2,0:3, . . . ,1g for two cases, i.e, undirected (cf.

yellow bars) and directed (cf. red bars) networks. There, each bar

represents the result of averaging over 30 random perturbations

(with dDi being uniformly distributed in the range ½{0:3, 0:3�) and

the standard square error is given as well. From Fig. 7 we may

draw the following conclusions: (i) the performance of topology

reconstruction using the ‘1-norm optimization strategy becomes

bad when p increases; (ii) The estimation accuracy Q0:98 is not

sensitive to the choice of perturbation parameters dDi when Q0:98

is close to one; (iii) There is no distinct difference between

undirected (cf. yellow bars) and directed (cf. red bars) networks.

Figure 2. Chaotic behavior of system (23) with N = 16 and node-pair connection probability 0.3. (A) x1-y1 phase figure. (B) z1-y1 phase
figure.
doi:10.1371/journal.pone.0024333.g002
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This indicates that the performance of topology reconstruction

using the ‘1-norm convex optimization strategy is not sensitive to

the inhomegeneity but sparsity (cf. Fig. 8).

Note that the ‘1-norm convex optimization strategy is very

effective for sparsely connected networks only. Hence, for non-

sparsely connected networks, this optimization method usually has

to require that almost all nodes are perturbed, as illustrated in

Fig. 9A as a representative result. In this case, the ‘1-norm convex

optimization strategy has no any clear advantage compared to the

matrix inverse algorithm (cf. Fig. 9B) that uses an ‘2-norm

optimization processing.

As mentioned above, we restrict ourselves and assume that an

effective network topology reconstruction is said to occur when

Q0:98§0:99. Based on this rule, we now analyze numerically the

relation between the minimal number of perturbations, referred to as

Mmin, that are required for a successful topology reconstruction

satisfying Q0:98§0:99, and the network size N . Figure 10 summa-

rizes our results and shows the logarithmic-linear plot of the relation

of N and Mmin for two cases, i.e., 4-nearest-neighbor coupled

network and directed network of nodes randomly connected with

possibility p~0:1. There is a clear logarithmic-linear relation

between N and Mmin. This result is consistent with Timme’s work

[21], and implies that we need less control applications (perturbations)

than the size of the networks under study.

Measurement noise cannot be avoided in some cases and

usually deteriorates the control performance of high-gain control

methods because measurement noise is largely amplified. Fortu-

nately, the MDFC method does not belong to high-gain control

[28] and can stabilize stationary states with very small gain (indeed

k1~k2~1 was used in all simulation results in this paper). This

implies that our topology estimation method is applicable to

network systems in the presence of measurement noise, as

illustrated in Fig. 11A where results are shown obtained from

observed signals contaminated with 5% measurement noise. We

found that more perturbations are generally required in the

presence of measurement noise (cf. Fig. 11A where M~75,

Q0:98~0:9935) compared to the case in the absence of

measurement noise (cf. Fig. 11B where M~70, Q0:98~0:9967).

Finally, we analyze the influence of g on topology estimation, and

revisit the network (23) but assume hij(x)~wij sin(x) with wij being

uniformly distributed in range ½w1, w2� such that the value of g can be

changed with the choice of parameters w1 and w2. Figures 12 and 13

summarize our results and show in both cases (i.e., w1~0:01,w2~2
and w1~0:001,w2~2) that the minimal value of estimated jbijj
corresponding to aij~1 is more than twice the maximal value of that

corresponding to aij~0, and thereby one may identify all parameters

aij correctly by the SDTIA algorithm [28]. Furthermore, the ratio of

the distance between sets I0 and I1 to the maximal value of set I0

Figure 3. Stable stabilization of system (23). (A)–(C) present the dynamic behavior of system (23) (with N = 16 and node-pair connection
probability 0.3) being driven for t§10 by the control signal (3) shown in (D) (with k1~k2~1, t1~0:4, t2~0:5, Di~0 Vi).
doi:10.1371/journal.pone.0024333.g003

Figure 4. Steady state shifts. Black circles plot the steady state
response of system (23) with N~16 by control signal with Di being
randomly chosen from the range ½0, 0:3�. Blue squares and red triangles
represent the steady state response to two random perturbations
dDm

i [½{0:3, 0:3� on the values Di , respectively. All plots show only the
steady state response of the first state of each Chua oscillator.
doi:10.1371/journal.pone.0024333.g004
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roughly increases with the value of g where the definition of sets I0

and I1 is illustrated in Fig. 1. Therefore, there exists a critical value gc

such that if gwgc is fulfilled, then one may identify all elements aij

correctly. On the other hand, when gvgc, the boundary between

sets I0 and I1 will become unclear and some elements aij cannot be

identified correctly. Even under such a circumstance, it is still possible

to estimate partial elements aij correctly if a suitable strategy is used to

delete those elements jb̂bij j contaminating the boundary between sets

I0 and I1. Detailed analysis is now under our investigation and will be

reported elsewhere.

Figure 5. Topology estimation: Matrix inverse algorithm VS ‘1-
norm optimization strategy. The estimation error surfaces are calculated
using two methods for a undirected network (23) with N~200 and node-
pair connection probability p~0:3: (A) matrix inverse algorithm (with
M~200, Q0:98~1); and (B) ‘1-norm convex optimization strategy (with
M~100, Q0:98~0:9975), respectively. With the normalized error eij shown
in Panel (A), Panels (C)–(D) plot the estimated jbij j corresponding to aij~1
and that corresponding to aij~0 after being sorted with ascending order,
respectively. It is clear from Panels (C)–(D) that one may identify all
parameters aij correctly by the SDTIA algorithm [28].
doi:10.1371/journal.pone.0024333.g005

Figure 6. Topology estimation: Matrix inverse algorithm VS ‘1-
norm optimization strategy. The estimation error surfaces are
calculated using two methods for a undirected network (23) with
N~400 and node-pair connection probability p~0:1: (A) matrix inverse
algorithm (with M~400, Q0:98~0:2433); and (B) ‘1-norm convex
optimization strategy (with M~130, Q0:98~0:9954), respectively.
doi:10.1371/journal.pone.0024333.g006

Figure 7. The influence of node-pair connection possibility on
topology reconstruction of random networks. The estimation
error Q0:98 changes with the node-pair connection possibility
p [ f0:1,0:2, . . . ,1g for two cases, i.e., undirected (yellow bars) and
directed (red bars) networks. There, Q0:98 is calculated using the ‘1-
norm convex optimization strategy (with N~64,M~60). Furthermore,
each bar represents the result of averaging over 30 random
perturbations (with Di~0 and dDi being uniformly distributed in the
range ½{0:3, 0:3�) and the standard square error is given as well.
doi:10.1371/journal.pone.0024333.g007
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Discussion

Delayed feedback control
It has been shown experimentally [35–38] that Pyragas’s

delayed feedback control method [39], which feeds the amplified

difference of a monitor (or measurable) variable and its delayed

component back to the controlled system, is applicable and very

effective to stabilize unstable period orbits as well as unstable

equilibrium points. Some advantages of Pyragas’s delayed

feedback control method include: (i) it feeds the amplified

difference of a monitor (or measurable) variable and its delayed

component back to the controlled system but does not use any

structure information about the controlled system; (ii) it is

noninvasive, that is, the control signal approaches to zero after a

unstable period orbit or a unstable equilibrium point is stabilized;

and (iii) it can easily be realized using analog or digital devices.

Some extended versions using more delayed components have also

been developed for improving further the control performance,

such as extended time delay auto synchronization [40,41] and

multiple delay feedback control [32,42,43] methods.

Delayed feedback control methods [32,35–43] are very efficient for

stabilizing unstable periodic orbits or unstable stationary states in

various real systems such as optics, semiconductors, networks of

chemical oscillators, and reaction-diffusion systems. Our previous

work [32,42,43] showed that the performance of stabilizing stationary

states is significantly improved using several independent delay times.

Although the reliability of all delayed feedback control
methods for stabilizing unstable period orbits and
unstable equilibrium points has been illustrated by
various experiments, the theoretical analysis and mech-
anism of delayed feedback control is still far from
strictness and completeness [44–47]. Fortunately, we found

that the steady state stabilization based on MDFC is always

possible for a large class of dynamical networks. In practice, one

can usually determine suitable control parameter values by a

search strategy, as illustrated in previous work [32].

Thus far the research on delayed feedback control focused on

stabilizing unstable period orbits and unstable equilibrium points

of chaotic systems. In this paper, we show a potential application

of using delayed feedback control for topology reconstruction.

Compared to previous linear state feedback control method [27–

29] which in general requires high-gain control and full state

feedback (i.e., all state components of each node are measurable

and accessible), the suggested delayed feedback control method is

applicable even in a challenging scenario where only one state

variables of each node are measurable and accessible.

Extension to more general coupling functions
Our method can also be extended to networks with more

general coupling functions but does not limit to those with only the

state-difference form hij(xj{xi). To demonstrate this point more

clearly, we consider the following network

Figure 8. The influence of the sparsity on topology reconstruc-
tion. The estimation error Q0:98 changes with the sparsity of directed
random networks. There, the sparsity is defined as the ratio of the
number of zero non-diagonal elements aij to N(N{1), and Q0:98 is
calculated using the ‘1-norm convex optimization strategy (with
N~64,M~60). Furthermore, each black point represents the result
of averaging over 30 random perturbations (with Di~0 and dDi being
uniformly distributed in the range ½{0:3, 0:3�) and the standard square
error is given as well.
doi:10.1371/journal.pone.0024333.g008

Figure 9. Topology reconstruction of full-connected networks with N~64. (A) The estimation error Q0:98 changes with the number Mw50
of perturbations, where Q0:98 is calculated using the ‘1-norm convex optimization strategy. (B) The estimation error surface (with M~64, Q0:98~1) is
calculated using the matrix inverse algorithm for the same system shown in Panel (A).
doi:10.1371/journal.pone.0024333.g009
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_xxi~f i(xi)zC
X
j[V

aijhij(xj ,xi) ð26Þ

where all variables follow the same definition in system (2) except

the coupling functions hij . Here hij : R|R?R. Again, we assume

that system (26) can be driven to a steady state by the control

signal (3). In this case, following similar steps developed for the

state-difference form, one can easily see that Eq. (12) now reads

g’(gi1)dgm
i1z
X
j[V

aij(Lhij=Lgj1)dgm
j1zaij(Lhij=Lgi1)dgm

i1~dDm
i ,Vi ð27Þ

where the first order approximation hij(xj ,xi)~hij(cj ,ci)z

(Lhij=Lcj)(xj{cj)z(Lhij=Lci)(xi{ci) is used.

This implies that Eq. (14) is again fulfilled but the matrix

B~(bij) now reads

bij~

aij(Lhij=Lgj1), for i=j,

g’(gi1)z
P

j[V ,j=i

aij(Lhij=Lgi1), for i~j:

8<
: ð28Þ

Therefore, our methods using matrix inverse algorithm and ‘1-

norm convex optimization strategy can be extended to topology

reconstruction of network (26) with more general coupling form, as

illustrated in Fig. 14 where hij(xj ,xi)~sin(xj){sin(xi) and the

network topology can be estimated effectively.

Implementation and error sources
We briefly outline our method for topology estimation:

i. Drive the network (with N nodes) to a steady state by control

signal (3) with Di (usually Di~0), and measure the resulting

steady state response gi1 for all i;

ii. Perturb the control signal (3) (i.e., replace Di byDizdDm
i where

dDm
i is randomly chosen from the range [-v, v]) M times, and

measure the resulting steady state response gi1zdgm
i1 for all i;

iii. Estimate all non-diagonal elements bij using the matrix

inverse algorithm (M~N ) or the ‘1-norm convex optimiza-

tion strategy (MƒN);

iv. Infer all non-diagonal elements aij from estimated bij by the

SDTIA algorithm [28].

One may see from the above steps that the topology estimation

error may come from different sources: (i) Steady state control; (ii)

Steady state measurement; (iii) The first order approximation

concerning functions hij(x); (iv) The matrix inverse operation error

(for the matrix inverse algorithm) or the optimization error (for the

‘1-norm convex optimization strategy); and (v) The value of g.

As described above, delayed feedback control methods [35–38]

are very efficient for stabilizing stationary states in various real

systems such as optics, semiconductors, networks of chemical

oscillators, and reaction-diffusion systems. Therefore, steady state

control usually cannot be considered as an error source, as

illustrated in Figs. 5, 6B, 9B, 10, 11, and 12.

Measurement of steady states also cannot be taken as a major

error source, as illustrated in Fig. 11 where acceptable results are

Figure 11. The influence of measurement noise on topology reconstruction. The estimation error surfaces of a directed network (23) with
N~100 and node-pair connection probability p~0:1 are calculated using ‘1-norm convex optimization strategy for two cases: (A) the presence of 5%
measurement noise (with M~75 and Q0:98~0:9935); and (B) the absence of measurement noise (with M~70 and Q0:98~0:9967).
doi:10.1371/journal.pone.0024333.g011

Figure 10. The functional relation between N and Mmin. The
logarithmic-linear plot of the relation of N and Mmin for two cases: (A)
4-nearest-neighbor coupled network; and (B) directed network of nodes
randomly connected with possibility p~0:1. There, the best logarithmic
fitting are plotted with red lines for both cases.
doi:10.1371/journal.pone.0024333.g010
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shown obtained from observed signals contaminated with 5%

measurement noise.

It is clear that if sufficiently small perturbations dDm
i are used,

then the first order approximation of functions hij(x) is reasonable

and cannot be taken a major error source of topology estimation.

This point has been supported by many numerical examples (cf.

Figs. Figs. 5, 6B, 9B, 10, 11, and 12).

For the matrix inverse algorithm, a major error source may

come from the inverse operation itself, as illustrated in Fig. 6A

where a bad estimation result (with Q0:98~0:2433) is achieved due

to the ill-condition problem of the matrix inverse operation.

For the ‘1-norm convex optimization strategy, a major error

source may come from the sparsity of networks under study, as

illustrated in Fig. 8. This is consistent with the fact that the ‘1-

norm convex optimization strategy is effective for sparsely

connected networks only.

The influence of g on topology estimation has been illustrated in

Figs. 12–13. It is clear that the ratio of the distance between sets I0

and I1 to the maximal value of set I0 roughly increases with the value

of g where the definition of sets I0 and I1 is illustrated in Fig. 1.

Therefore, there exists a critical value gc such that if gwgc is fulfilled,

then one may identify all elements aij correctly. It should be remarked

that the value of gc is determined by the control signal (3), the

coupling functions, the equilibria of network (2), and the initial states.

If the network under study has more than one equilibrium, then it is

still possible to change the value of gc by choosing the proper time to

perform the steady state control to shift the equilibrium of the

network dramatically. However, such a strategy in principle has to

Figure 13. Topology reconstruction in the case of w1~1|10{3, w2~2, and g~6:776|10{4. (A) The estimation error surface of a directed network
with N~100 and node-pair connection probability p~0:1 is calculated using ‘1-norm convex optimization strategy with M~80. With the normalized
estimation errors eij shown in Panel (A), Panels (B)–(C) plot the estimated jbij j corresponding to aij~1 and that corresponding to aij~0 after being sorted with
ascending order, respectively. Insert in Panel (b) shows a local augment. It is clear that the minimal value of estimated jbij j shown in Panel (b) is more than twice
the maximal value of estimated jbij j shown in Panel (c), and thereby one may identify all parameters aij correctly by the SDTIA algorithm [28].
doi:10.1371/journal.pone.0024333.g013

Figure 12. Topology reconstruction in the case of w1~0:01, w2~2, and g~5:02|10{3. (A) The estimation error surface of a directed network
with N~100 and node-pair connection probability p~0:1 is calculated using ‘1-norm convex optimization strategy with M~80. With the
normalized estimation errors eij shown in Panel (A), Panels (B)–(C) plot the estimated jbij j corresponding to aij~1 and that corresponding to aij~0
after being sorted with ascending order, respectively. Insert in Panel (B) shows a local augment. It is clear that the minimal value of estimated jbij j
shown in Panel (b) is more than twice the maximal value of estimated jbij j shown in Panel (C), and thereby one may identify all parameters aij

correctly by the SDTIA algorithm [28].
doi:10.1371/journal.pone.0024333.g012
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require some prior knowledge about the the equilibria of the network,

and thereby has its restriction in some applications.

Advantages and disadvantages of our method
Some advantages of our method include:

i. If network synchronization occurs and leads to vanishing

coupling terms, then the network connectivity information is

hidden and cannot be recovered with time-series analysis

methods [19,24,26]. However, our topology reconstruction

method is applicable to synchronous networks;

ii. Previous topology reconstruction method [27,28] based on

steady-state stabilization generally has to assume that all state

variables of each node are completely measurable and all

state components of each node admit an external input.

However, our method is applicable even in a challenging

scenario where only one state variables of each node are

measurable and accessible;

iii. Our method requires only small control injection and does

not belong to a kind of high-gain control [27,28]. Hence it is

not sensitive to measurement noise and may achieve better

performance than high-gain control method [27,28] and the

methods using differential estimator in the presence of

measurement noise;

iv. Previous time-series methods [19,26] require a lot of

information about the local dynamics of each node and

coupling functions. This is really a restriction in some

applications. However, our method does require only a little

structure information about the controlled networks, and

provides a promising solution for topology reconstruction if

the required control perturbations are allowed.

On the other hand, our method also possesses some

disadvantages:

i. Our method is applicable to topology estimation of sparsely

connected networks with size N when M%N perturbations are

performed, but in general one has to measure the steady state

response of all nodes and the measurement ‘‘cost’’ increases

linearly with the size of networks, even when only partial

connections of interest require to be estimated. Such a drawback

also exists for most of previous methods except the high-gain

control method [28];

ii. Steady state stabilization and shifts are the foundation of our

method. However, such a kind of steady state control (or

perturbation) will influence the dynamical behavior of

systems, so our method may fail for systems that do not

support the required steady state control. In this case,

previous time-series methods [19,24,26] might be considered

as a potential strategy for topology reconstruction.

iii. Our method may in principle fail when time-varying

topology is required to be reconstructed. In such a

circumstance, previous time-series methods [19,24,26] might

be applicable for correct estimation.

Potential applications
Previous works have shown the importance of topology connec-

tions on spatiotemporal pattern of networks of coupled chemical

oscillators [48–51]. Furthermore, delayed feedback control has

effectively been applied to stabilize (unstable) steady states of chemical

oscillators (cf. Ref. [52] for a representative result). Therefore, our

method is possible to be used to reconstruct the connection topology

of interacting chemical oscillators. Another possible application is to

reconstruct topology of gene networks [22] by delayed feedback

control, provided online measurement and injection techniques are

feasible. Generally, the suggested technique enables us to identify the

connection topology of real networks (including circuit networks and

interacting coupled chemical oscillators [48–51]) which allow the

required control applications (perturbations). Some possible experi-

mental research is now under our investigation.
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