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Abstract

Hydrogen sulfide (H2S) is a novel gasotransmitter that inhibits L-type calcium currents (I Ca, L). However, the underlying
molecular mechanisms are unclear. In particular, the targeting site in the L-type calcium channel where H2S functions
remains unknown. The study was designed to investigate if the sulfhydryl group could be the possible targeting site in the
L-type calcium channel in rat cardiomyocytes. Cardiac function was measured in isolated perfused rat hearts. The L-type
calcium currents were recorded by using a whole cell voltage clamp technique on the isolated cardiomyocytes. The L-type
calcium channel containing free sulfhydryl groups in H9C2 cells were measured by using Western blot. The results showed
that sodium hydrosulfide (NaHS, an H2S donor) produced a negative inotropic effect on cardiac function, which could be
partly inhibited by the oxidant sulfhydryl modifier diamide (DM). H2S donor inhibited the peak amplitude of I Ca, L in a
concentration-dependent manner. However, dithiothreitol (DTT), a reducing sulfhydryl modifier markedly reversed the H2S
donor-induced inhibition of I Ca, L in cardiomyocytes. In contrast, in the presence of DM, H2S donor could not alter cardiac
function and L type calcium currents. After the isolated rat heart or the cardiomyocytes were treated with DTT, NaHS could
markedly alter cardiac function and L-type calcium currents in cardiomyocytes. Furthermore, NaHS could decrease the
functional free sulfhydryl group in the L-type Ca2+ channel, which could be reversed by thiol reductant, either DTT or
reduced glutathione. Therefore, our results suggest that H2S might inhibit L-type calcium currents depending on the
sulfhydryl group in rat cardiomyocytes.
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Introduction

In addition to the gasotransmitters nitric oxide (NO) and carbon

monoxide (CO), hydrogen sulfide (H2S) is the third biologic signal

gaseous molecule and is recognized as an important physiologic

regulator in the circulatory, nervous, endocrine and immune

systems [1]. In the investigation of broad physiological functions,

the cardio-protective effect of H2S was first found and drew much

attention in the field of life sciences. H2S can be endogenously

generated from cysteine by the cystathionine-U-lyase (CSE)

enzyme in the cardiovascular system [2]. In vitro and in vivo

experiments showed that H2S induced negative cardiac inotropic

effects and played a cardio-protective role in various models of

diseases. It was also found that exogenous H2S post-conditioning

successfully protected isolated rat hearts against ischemia-reperfu-

sion injury [3] and played a protective role in chronic heart failure

[4]. However, the mechanism responsible for the negative cardiac

inotropic effects of H2S has not been fully understood.

L-type calcium channels are decisive in the excitation/

contraction coupling in cardiomyocytes, and they provide the

main pathway through which Ca2+ enters into myocardial cells;

therefore, the Ca2+ entering through these channels may trigger

the Ca2+-induced Ca2+ release. The amount of Ca2+ released from

intracellular calcium stores and the Ca2+ entering the sarcoplasmic

reticulum (SR) from outside the cells maintain intracellular

calcium homeostasis, which plays a fundamental role in myocar-

dial physiology and pathology [5]. In 2008, Sun, et al.

demonstrated that H2S could inhibit L-type calcium channels in

cardiomyocytes [6]. However, the potential targeting site on L-

type calcium channels has not been clarified.

H2S is more potently toxic than cyanide since it blocks

cytochrome C oxidase that results in mitochondrial respiration

inhibition [7,8]. The transformation of disulfide bridges into

sulfhydryl groups of the cysteine-containing proteins at the center

of cytochrome C oxidase was regarded as the mechanism for

intoxication of H2S [9]. Toxicological experiments showed that

pre-treatment with oxidized glutathione (GSSG) or methemoglo-

binemia could protect experimental mammals against a subse-

quent lethal challenge from inorganic sulfide poisoning; alterna-

tively, a method of de-intoxication of H2S involves trapping free
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sulfide which may prevent it from reaching a vital enzymatic site

[9]. Thus, the disulfide bridges or the sulfhydryl groups of the

cysteine-containing proteins may be the effective targets of H2S.

Meanwhile, the subunits of the L-type calcium channel [10] and

ATP sensitive potassium channel [11] were found to contain

functionally important free sulfhydryl groups that modulate gating.

Therefore, we hypothesized that a novel mechanism of activation

of the channels might resulted from the formation of a disulfide

bridge between cysteine residues of the pore and that H2S might

have an accommodating gate on the channels mentioned above

with ‘‘Cys-SH’’ as the critical target.

The protein structure and function of thiol-containing com-

pounds, containing cysteine residues which can form a disulfide

bond when the sulfhydryl group of cysteine is oxidized, could be

altered. Sulfhydryl reagents have been widely used as a

pharmacological tool to explore the molecular functions of

channel proteins. The fact that L-type calcium channels are

subjected to direct modification by sulfhydryl reagents has been

demonstrated [12].

Therefore, the present study was undertaken to investigate

whether the inhibitory effects of L-type calcium channel induced

by H2S was dependent on the disulfide bridge or sulfhydryl group.

Methods

Ethics Statement
All animal experimental procedures conformed to the ‘‘Guide

for the Care and Use of Laboratory Animals’’ published by the

National Institutes of Health (NIH) in the United States and ‘‘The

use of non-human primates in research’’, and the Animal

Research Ethics Committee of Peking University First Hospital

specifically approved this study with the permit number of

J200913.

Animals
Male Sprague-Dawley (SD) rats with a body weight of 200–

250 g were obtained from Vital River (Beijing, China). The rats

were housed in cages and fed a standard laboratory diet and fresh

water. The cages were kept in a room with controlled temperature

(2461uC), relative humidity (65–70%) and 12 hour light/dark

cycle.

Chemicals
NaHS, collagenase I, protease E aminoethylsulfonic acid, L-

aminoglutaminic acid, CsOH, CsCl, nifedipine, (6) Bay K8644,

diamide (DM), dithiothreitol (DTT), reduced L-glutathione

(GSH), L-cysteine (L-CY), Na2ATP, and Na2GTP were purchased

from Sigma (St Louis, MO, USA). Bovine serum albumin (BSA),

HEPES and EGTA were purchased from Amresco (Solon, USA).

TTX was purchased from Aquatic Products Research Institute

(Hebei, China). NaHS was dissolved in bath solutions. Fresh stock

solutions were then diluted with bath solution to yield H2S

solutions of various concentrations.

Experimental protocol of measurement of cardiac
function in vivo

All rats were anesthetized with 12% urethane (1 ml/100 g, i.p.).

The isolated hearts were removed quickly and fixed using the

Langendorff perfusion apparatus with the left auricular appendage

removed. They were retroperfused in the aorta with the 37uC
Krebs-Henseleit (K-H) solution containing the following at mmol/

L concentrations: NaCl, 118.0; KCl, 4.7; KH2PO4, 0.93;

MgSO4?7H2O, 1.2; CaCl2, 1.5; NaHCO3, 25; C6H12O6, 11.0;

pH 7.4, mixed by 95% O2 and 5% CO2. A balloon catheter was

inserted into the left ventricle for the measurement of left

ventricular systolic pressure (LVSP) and the left ventricular (LV)

pressure (6dp/dtmax). The balloon was connected to a pressure

transducer with the computer. The fluid was adjusted to obtain a

left ventricular end-diastolic pressure (LVEDP) under 10 mmHg.

For all rats, cardiac function was assessed by using the Powerlab

(4S, Australia) after a 20 min equilibration period. Subsequent

procedures were as follows. Thirty-three rats were randomly

divided into five groups: 1) isolated rat hearts (n = 6) were

equilibrated 20 min in the K-H solution, then perfused with the

K-H solution with 100 mmol/L NaHS for 10 min, and the cardiac

function was again determined by Powerlab; 2) after 20 min

stabilization, the isolated hearts (n = 6) were perfused with the K-H

solution with 100 mmol/L DM for 5 min, and the cardiac function

of this stage was also recorded. Subsequently, the K-H solution

with 100 mmol/L NaHS was used to perfuse the hearts and the

data were assessed; 3) isolated rat hearts (n = 6) were firstly

equilibrated 20 min in the K-H solution, and then perfused with

the K-H solution with 100 mmol/L DTT for 5 min. Finally the K-

H solution with 100 mmol/L NaHS was infused into the hearts,

and the cardiac functions were observed by Powerlab; 4) isolated

rat hearts (n = 9) were perfused with the K-H solution with

nifedipine at a dosage of 10 mmol/L for 5 min, and the cardiac

function at this stage was recorded. Subsequently, hearts were

perfused with the K-H solution with 100 mmol/L NaHS, and the

data were also recorded; 5) isolated rat hearts (n = 6) were perfused

with the K-H solution with nifedipine at a dosage of 10 mmol/L

for 5 min, and the cardiac function was recorded at this stage. The

hearts were subsequently perfused with the K-H solution alone

and the same indexes were recorded by Powerlab. Alteration of

left ventricular pressure [DLVP = left ventricular systolic pressure

(LVSP)-left ventricular end diastolic pressure (LVEDP)] was

calculated to reflect the maximum contractility of left ventricle

myocardium; +dp/dtmax indicates the maximum contractile

velocity of myocardium, while 2dp/dtmax represents the myocar-

dial maximum diastolic ability.

Cardiomyocyte isolation
Single cells were obtained by following a method described by

Zhang et al. with modifications [13]. Briefly, each rat was

anesthetized with 12% ethylcarbamate (1 ml/100 g i.p.). The

heart was rapidly excised and attached to an improved

Langendorf perfusion apparatus. The heart was then retrogradely

perfused for 5 min at 37uC with Ca2+-free Tyrode’s solution

containing (in mmol/L) NaCl 137, KCl 5.4, NaH2PO4 0.33,

MgCl2 1.0, glucose 10, and HEPES 10, and the pH was adjusted

to 7.3–7.4 with NaOH after the solution was equilibrated with

95% O2 and 5% CO2. Enzymatic digestion with a steady

perfusion pressure of 80 mmol/L Hg was achieved by re-

circulating the perfusion apparatus with the low calcium

oxygenated Tyrode’s solution containing 0.8 mg/ml collagenase

Type I, protease E 0.1 mg/ml, 0.5 mg/ml BSA, and 20 mmol/L

Ca2+ for 13–15 min. The ventricles were separated from the heart,

cut into small pieces, and stirred to obtain a cell suspension at

37uC in oxygenated KB solution containing (in mmol/L) KOH

80, KCl, 40, KH2PO4 20, glutamic acid 50, MgSO4 3, taurine 20,

EGTA 0.5, HEPES 10, and glucose 10, and the pH was adjusted

to 7.3–7.4 with KOH. After 3 min of stirring for 3 separate times,

the cell suspensions were centrifuged and washed with 1 mmol/L

CaCl2. Finally, the isolated cells were suspended in KB solution

containing 0.5 mg/ml BSA and stored at room temperature for

30 min to 1 h before experiments. Rod-shaped cells with clear

cross-striations without automatic contraction were used in the

present study.
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Voltage-clamp recording
Currents of L-type calcium channels were recorded under

voltage clamping in the whole-cell configuration of the patch-

clamp technique. Cardiomyocytes were placed in a dish at the

stage of an inverted microscope (IX70, Olympus Inc., Tokyo,

Japan) and were continuously perfused at a constant rate (1.5 ml/

min) with a oxygenated solution containing (in mmol/L) NaCl

137, CaCl2 1.8, MgCl2 1, CsCl 5.4, TTX 0.02, 4-AP 4, HEPES

10, and glucose 10 (pH adjusted to 7.3–7.4 with NaOH). Single

cells were voltage-clamped using a patch-clamp amplifier

(Axopatch 200B, Axon Instruments, Burlingham, CA, USA).

Physiological signals was recorded by pClamp 6.0 (Axon

Instruments). Pipettes for whole-cell patch-clamp recordings were

made from borosilicate glass capillaries and had resistances of 1 to

3 MV. The pipette solution contained (in mmol/L) CsCl 130,

MgCl2 1, Na2ATP 5, Na2GTP 0.5, EGTA 11, and HEPES 10

(pH adjusted to 7.3 with CsOH). The I Ca, L current was measured

under the conditions described above. K+ currents were

suppressed by internal Cs+ and 4-AP in the perfusion solution,

as well as by external K+-free solution. The Na+ current was

suppressed by TTX. The Na+-K+ pump current was inactivated in

K+-free bath solutions and Na+-free pipette solutions. Membrane

currents associated with Na+-Ca2+ exchange was eliminated by the

Na+-free and low-Ca2+ (11 mmol/L EGTA) pipette solutions.

Application of nifedipine (10 mmol/L) to the bath solution could

completely inhibit the peak I Ca, L within 1 min, confirming that

the measured current was due to I Ca, L.

I–V relationship of I Ca, L was obtained by plotting the peak

current amplitude in response to voltage pulses to potentials

between 240 and +70 mV from a holding potential of 240 mV

(steps of 10 mV increments). The steady state activation of I Ca, L

was determined by applying 200 ms of depolarizing pulses

between 270 mV and +30 mV from a holding potential of

270 mV. The steady-state inactivation of I Ca, L was determined

by applying a two-pulse protocol containing 1 s pre-pulses

between 270 and +30 mV and a subsequent 200 ms of test pulse

to 0 mV from a holding potential of 270 mV. The recovery of I

Ca, L from inactivation was tested with a double-pulse protocol

consisting of a 200 ms of conditioning pulse to 0 mV followed by a

200 ms of test pulse to 0 mV from a holding potential of 270 mV

with increasing interval steps of 20 ms between 20–500 ms. To

standardize membrane currents to Cm, the capacity current

transiently measured in response to a 5 mV hyperpolarizing pulse

was integrated and divided by the given voltage to yield total Cm

for each cell. Various concentrations of NaHS were applied by a

fast puffing system. All experiments were performed at a room

temperature of 21–23uC.

Cell culture and identification of protein containing free
sulfhydryl groups

H9C2 cells grown in 100-mm plates were incubated with

Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen,

Carlsbad, CA, USA) administrated with 10% fetal bovine serum

(FBS, Invitrogen, Carlsbad, CA, USA), 2 mmol/L L-glutamine,

100 U/ml penicillin and 100 mg/ml streptomycin under 37uC,

5% CO2 and saturated humidity for cell growth. When H9C2

cells reached at 80–90% confluence, the complete medium was

changed into serum-free medium for 24 h and then incubated in

DMEM containing 10% FBS. In the NaHS group, H9C2 cells

were respectively treated with NaHS at 100 mmol/L for 30 min,

DM at 100 mmol/L for 5 min, DTT at 5 mmol/L for 5 min,

GSH at 5 mmol/L for 5 min, L-CY at 5 mmol/L for 5 min, and

NaHS at 100 mmol/L for 25 min followed by DTT at 5 mmol/L

for 5 min or followed by GSH at 5 mmol/L for 5 min. While, in

the control group H9C2 cells were just incubated with 10% FBS

DMEM for the same period. Then, H9C2 cells were solubilized in

1 ml of lysis buffer, and cell lysates were incubated with 50 ml of

EZ-LinkTM PEO-iodoacetyl Biotin (10 mg/ml; Pierce) for 12 h at

4uC and then incubated with 30 ml of UltraLinkTM Immobilized

NeutrAvidinTM (Pierce) for 4 h on a roller system at 4uC. The

beads were washed twice with 1 ml of lysis buffer and three times

with 1 ml of PBS. For Western blot analysis, proteins containing

sulfhydryl groups of H9C2 cells were subjected to SDS-PAGE,

and the proteins were transferred to nitrocellulose membranes.

Membranes were probed with anti-L-type calcium channel

antibody (Sigma, Saint Louis, Missouri, USA) and developed

with Western blotting luminol reagents (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA, USA).

Statistical analysis
The data were analyzed with the pCLAMP 10.0 (Axon

Instruments), SPSS 13.0 and Microcal Origin 6.0 software. All

data in the figures were expressed as mean 6 SD. Differences

among groups were analyzed with one-way ANOVA followed by

LSD or Dunnett’s post-hoc test where applicable. Significance was

established at the P,0.05 level.

Results

The effect of NaHS on cardiac function
With 100 mmol/L NaHS continuous perfusion at a physiolog-

ical dosage for 10 min, LV 6 dp/dtmax and DLVP decreased

significantly compared with the control (P,0.01, Fig. 1A).

Sulfhydryl modifiers impacted NaHS-induced inhibition
of cardiac function in isolated perfused rat hearts

To examine if the NaHS-induced inhibitory effect on cardiac

function in isolated perfused rat hearts depended upon the protein

sulfhydryl group, we used DM, an oxidizing sulfhydryl modifier to

transform protein sulfhydryl groups into disulfide bridges. The LV

6dp/dtmax and DLVP decreased after perfusion with DM at

dosage of 100 mmol/L for 5 min as compared with controls

(P,0.05, Fig. 1B). However, in the presence of DM perfusion

fluid, the LV 6dp/dtmax and DLVP were not altered when

continuously perfused with 100 mmol/L NaHS for 10 min

(P.0.05, Fig. 1B).

Next, we used DTT, a reducing sulfhydryl modifier, in the

perfusion fluid to see if it could mediate the inhibition of cardiac

function induced by NaHS. In addition to the fact that LV 6dp/

dtmax and DLVP did not change during perfusion with 100 mmol/

L DTT for 5 min as compared with controls (P.0.05, Fig. 1C), we

found that continuous perfusion of K-H solution with 100 mmol/L

NaHS for 10 min in the presence of DTT obviously decreased the

LV 6dp/dtmax and DLVP, compared to DTT perfusion without

NaHS treatment (P,0.01, Fig. 1C).

The effect of nifedipine on cardiac function in isolated
perfused rat hearts treated by NaHS

Compared with controls, the LV 6dp/dtmax and DLVP

decreased when perfused with the K-H solution consisting of

nifedipine at a dosage of 10 mmol/L for 5 min (P,0.05, Fig. 1D

and E). However, after continuous perfusion with the K-H

solution for 10 min, the ventricular 6dp/dtmax and DLVP

increased significantly as compared to those with K-H solution

consisting of nifedipine (P,0.01, Fig. 1E). Furthermore, the data

showed that continuous perfusion with NaHS at a dosage of

100 mmol/L following nifedipine perfusion could increase the
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Figure 1. NaHS and sulfhydryl modifiers impacted NaHS-induced cardiac function. A: NaHS (100 mmol/L) depressed LV 6 dp/dtmax and
DLVP significantly as compared with the control. **P,0.01 vs. control. B: NaHS (100 mmol/L) could not change LV 6 dp/dtmax and DLVP in the
presence of DM perfusion. *P,0.05 vs. control, #P,0.05 vs. DM. C: NaHS (100 mmol/L) could depress LV 6 dp/dtmax and DLVP in the presence of DTT.
**P,0.01 vs. DTT group. D and E: There were no significant differences in the change in the ventricular 6dp/dtmax and DLVP between the perfusate
with and without NaHS following nifedipine perfusion (P.0.05). The gray line stands for the experiment protocol ‘‘K-H +Nifei+K-H’’, and the black line
stands for the experimental protocol ‘‘K-H +Nifei+NaHS’’. **P,0.01 vs control group. ##P,0.01 vs. nifedipine group.
doi:10.1371/journal.pone.0037073.g001
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ventricular 6dp/dtmax and DLVP (P,0.01). However, there were

no significant differences in the change in the ventricular 6dp/

dtmax and DLVP between the perfusate with and without NaHS

following nifedipine perfusion (P.0.05, Fig. 1D and 1E). Those

results suggested that pretreatment with nifedipine to inhibit L-

Ca2+ channel could block the negative inotropic effect of NaHS.

Characteristics of the L-type calcium channel current in
rat ventricular cardiomyocytes

The L-type calcium currents were activated by a series of

depolarizing pulses from 250 mV to +70 mV at 10 mV

increments. This inward current could be almost completely

inhibited (95%) by 10 mmol/L nifedipine, a specific L-type

calcium channel blocker, and could be increased markedly

(300%) by 1 mmol/L Bay K 8644. Fig. 2A, B, C and D show

the representative traces and the corresponding I–V curves. The

peak of the I–V curve of the I Ca, L was at membrane potentials of

0 mV under control conditions and bath application of 1 mmol/L

Bay K 8644.

Inhibitory effect of NaHS on I Ca, L in rat ventricular
cardiomyocytes

I Ca, L was elicited by pulses from a holding potential of

240 mV to 0 mV for 200 ms every 1 min using the whole-cell

patch clamp technique. Four increasing concentrations of NaHS

(100, 200, 500 and 1000 mmol/L) were successively applied to the

cell for 3 min duration of perfusion per concentration, and the

effects of NaHS on the I Ca, L were detected. Representative

current traces in ventricular cardiomyocytes are shown in Fig. 2E.

Application of increasing concentrations of NaHS (100, 200, 500

and 1000 mmol/L) significantly reduced the amplitude of the peak

of I Ca, L to 85.1164.33%, 79.54611.65%, 74.44616.29% and

62.85618.53% of the value in the control at the same time point,

respectively. The inhibition of I Ca, L preceded rapidly in the first

1 min, and during the washout period (5 min) I Ca, L could be

partially recovered. Thus, the effects of NaHS on I Ca, L were

reversible at least in part.

Concentration-dependent inhibitory effect of NaHS on I

Ca, L

As shown in Fig. 2F and H, the bath application of NaHS in

various concentrations also inhibited the peak amplitude of the

calcium current. The NaHS decreased the concentration-response

curves of I Ca, L evoked by a single pulse from 240 mV to 0 mV

for 200 ms in the rat ventricular cardiomyocytes. In comparison

with the control, the peak amplitude of calcium current was

decreased successively from 82.0963.55%, 72.9768.51%,

62.91610.25% to 52.7569.78% of the control values by NaHS

at concentrations from 100, 200, 500 through 1000 mmol/L,

respectively. Dose-response curves were fitted by the logistic

function: Y = (A1-A2)/[1+(x/x0)p]+A2, and Kd of NaHS on I Ca, L

was 376.66621.78 mmol/L. Fig. 2F and H show the I–V curves

constructed in the absence or presence of NaHS by applying a

200 ms voltage pulse ranging from 240 mV to +70 mV, in

10 mV increments. In order to avoid the influence of different cell

sizes, the I Ca-L was divided by the membrane capacitance, an

index of cell surface area. From Fig. 2F and H, I Ca, L density was

decreased significantly in ventricular cardiomyocytes obtained

from NaHS perfused groups (22.4460.17 pA/pF,

22.9160.26 pA/pF, 23.3760.22 pA/pF and 23.8060.29 pA/

pF for 1000, 500, 200 and 100 mM NaHS perfused groups,

respectively) compared to those from the control

(24.6360.34 pA/pF, n = 6, P,0.05). Application of NaHS

showed a concentration-dependent suppression on the peak of

the I–V curves without altering the reversal potential and the

voltage dependence of peak I Ca, L.

Effect of NaHS on the current kinetics of L-type calcium
channel activation and inactivation

After perfusion of the cardiomyocytes with 1000 mmol/L

NaHS, the steady-state activation curve of the L-type calcium

channel (Fig. 2H) showed that the half-maximal activation voltage

(V1/2) did not change (from 220.160.65 to 219.4560.76 mV,

P.0.05, n = 8). The K values were 4.8560.47 and 5.2760.69 in

the control and NaHS treated groups (P.0.05), respectively,

without shifting in the activation curve. For the steady-state

activation curve, currents were elicited by applying a series of

200 ms of depolarizing pulses (range from 270 mV to +30 mV in

10 mV increments) from a holding potential of 270 mV, and the

activation curves were fitted by the Boltzmann equation: G Ca/G

Ca Max = 1-{1+exp[-(Vm-V1/2)/k]}21.

Meanwhile, the effects of NaHS on the steady-state inactivation

characteristics of the L-type calcium channel (Fig. 2I) in

ventricular cardiomyocytes were observed with a 200 ms test

pulse of 0 mV after various pre-pulses which lasted for 1 s each

(range: from 270 mV to +30 mV; in 10 mV increments) to a

holding potential of 270 mV. The inactivation curves were

calculated using the Boltzmann equation: I Ca/I Ca max = {1+exp

[(Vm-V1/2)/k]}21. However, there was no significant difference in

the inactivation characteristics of the L-type calcium channel

between those of the NaHS perfused and of the control groups.

V1/2 values were 225.3860.68 and 225.8460.59 mV in the

control and the NaHS-treated groups (P.0.05, n = 8), respective-

ly. The K values were 5.8860.25 and 6.0360.37 in the control

and NaHS perfused groups, respectively. There was no significant

shift in the steady state inactivation curve of I Ca, L.

The kinetics of recovery of I Ca, L from the inactivation curves

were tested with a double-pulse protocol: a 200 ms of conditioning

pulse to 0 mV followed by a 200 ms of test pulse to 0 mV from the

holding potential of 270 mV with increasing intervals to 500 ms

in increments of 20 ms. The recovery curve could be fitted by the

exponential equation: I Ca/I Ca max = 12exp (2t/t). There was a

significant extension of I Ca, L recovery from inactivation, since the

time constant (t value) changed from 70.5664.43 to

162.86627.75 ms in the control and the NaHS (1000 mmol/L)-

treated groups, respectively (P,0.01, n = 8) (Fig. 2J). The time

course of the recovery from the inactivation of I Ca, L was much

slower in the presence of NaHS. The effect of NaHS induced a

shift in the kinetics of recovery of I Ca, L from inactivation; and the

I/I max values of the NaHS perfused group significantly decreased

in comparison with that of the control, as the interval of pulses

increased stepwise from 20 to 200 ms in 20 ms increments.

Effects of sulfhydryl-modifying reagents (DM and DTT) on
cardiomyocyte L-type Ca2+ channels

Fig. S1A shows the electrophysiological effects of 100 mmol/L

DM on ICa, L in a control cardiomyocyte group (curve 1)

compared with the 100 mmol/L DM-treated group (curve 2). The

peak I Ca, L elicited by test pulses from 240 to 0 mV was plotted

over a recording time course of a total of 14 min. In the DM-

treated (8 min) group, the peak I Ca, L markedly decreased by

48.6765.05% (n = 6, P,0.05) compared with the control group. A

rapid depression took place at the beginning of the 5 min of

extracellular application of 100 mmol/L DM, while the steady

inhibitory effect of DM on I Ca, L developed from 7 min after the

drug perfusion.
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Pooled data of the DTT-treated group and the controls are

shown in Fig. S1B. It was found that either 1 mmol/L or 5 mmol/

L DTT elicited almost no significant decrease in peak I Ca, L.

However, application of either 1 mmol/L or 5 mmol/L DTT had

a very slow and slightly decreasing effect on I Ca, L in a time-

dependent manner when the perfusion time was longer than

6 min.

Figure 2. Representative L-type calcium current (I Ca, L) in rat ventricular cardiomyocytes (A, B, C and D); NaHS inhibits the peak of I

Ca, L, and a gradual augmented concentration response relationship of NaHS-induced inhibition on I Ca, L (E); NaHS inhibited I Ca, L (F
and H); and effect of NaHS on the kinetics of I Ca, L activation and inactivation (I, G and K). A: Typical traces of whole-cell superimposed I

Ca, L. B: I Ca, L was enlarged by 1 mmol/L Bay K 8644. C: I Ca, L was completely inhibited by 10 mmol/L nifedipine. D: Nifedipine could almost completely
inhibit (95%) the inward current, and Bay K 8644 could increase the inward current markedly (300%). E: Application of increasing concentrations of
NaHS (100, 200, 500 and 1000 mmol/L) significantly reduced the amplitude of the peak of I Ca, L, respectively, as shown in the figure labeled as b, c, d,
and e, respectively (‘‘a’’ stands for the beginning). The inhibition of I Ca, L preceded rapidly in the first 1 min, and during the washout period (5 min) I

Ca, L could be partially recovered (n = 6 for each group). *P,0.05 vs. control. F: The inhibitory effects of NaHS on the peak of I Ca, L. Statistically
significant decreases in currents were apparent in four separate concentrations of NaHS (100, 200, 500 and 1000 mmol/L)-treated cells. G: The mean
current density-voltage for I Ca, L in rat left ventricular cardiomyocytes decreased significantly by four separate concentrations of NaHS (100, 200, 500
and 1000 mmol/L). H: 1000 mmol/L NaHS did not change the steady-state activation curve of the L-type calcium channel. I: 1000 mmol/L NaHS did not
change the steady-state inactivation curves of the L-type calcium channel. J: NaHS induced a shift in the kinetics of recovery of I Ca, L from inactivation;
and the I/I max values of the NaHS-perfused group significantly decreased in comparison with those of the control.
doi:10.1371/journal.pone.0037073.g002
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Although DTT had no direct effect on L type calcium channels,

the inhibition of DM on peak I Ca, L could be abolished completely

by bath application of DTT. As shown in Fig. S1C, after

application of DM for 8 min, the peak Ca2+ current decreased to

the lowest value; however, when 5 mmol/L DTT was applied, the

peak Ca2+ current gradually increased. The mean peak amplitude

of calcium current obtained from perfusion with 5 mmol/L DTT

for 5 min increased from 67.1264.86% to 83.9164.92% of

baseline (n = 6, P,0.01). Thus, it seems that the DTT has a

dissociating effect on the decrease in the L-type calcium currents

induced by DM.

Sulfhydryl modifiers impact NaHS-induced inhibition of
L-type calcium currents in cardiomyocytes

To examine if the NaHS-induced inhibitory effect on cardiac

function in isolated perfused rat hearts depends on protein

sulfhydryl groups, we used DM, an oxidizing sulfhydryl modifying

substance, and DTT, a reducing sulfhydryl modifying regent, in

this part of the experiment. Fig. 3A and Fig. 3B show the effect of

NaHS on the peak I Ca, L of L-type calcium channels of

cardiomyocytes pre-treated with DM and DTT, respectively. We

found that a significant decrease in peak amplitude of I Ca, L could

be reduced by pre-incubation with 100 mmol/L DM for 10 min,

and the decrease in peak amplitude of I Ca, L in cardiomyocytes

pre-treated by DM was basically constant and time-independent

from the beginning through the final time point of 1 mmol/L

NaHS perfusion period (beginning time point: 45.3864.01%, end

time point: 45.4365.04%, n = 6, P.0.05), respectively, compared

with controls. The above data suggested that the state favoring

formation of protein disulfide bonds of cysteines blocked DM- or

H2S donor (NaHS)-induced inhibition of L-type calcium currents.

Furthermore, we found that the reduction of sulfhydryl with

DTT did not change the peak I Ca L, since the peak I Ca, L of

cardiomyocytes pre-treated with 1 mmol/L DTT for 10 min was

9761.24% of the controls (P.0.05). Removal of DTT by washing

with a 1 mmol/L NaHS-containing solution resulted to a

significant decrease in peak I Ca, L up to 65.366.06% of the

control values (n = 6, P,0.05).

Fig. 3C showed that the NaHS induced a decrease in the peak I

Ca, L, and this decrease may be promptly reversed by DTT. The

peak of I Ca, L was 9761.44%, 58.5864.86% and 106.4464.92%

of the control, respectively, from the beginning until the end time

points of perfusion with 1 mmol/L NaHS, as well as during the

period of washing with 5 mmol/L DTT. Thus, the decrease in

peak I Ca, L induced by NaHS depended on the state of the free

sulfhydryl group. That is, NaHS affected L- type calcium channels

with the free sulfhydryl group but not with the disulfide bonded

cysteines on the L-type calcium channels.

Effects of NaHS on the free sulfhydryl groups of L-type
calcium channel in H9C2 cells

To demonstrate if H2S targeted sulfhydryl groups in the L-type

calcium channels in rat cardiomyocytes, we detected the ratio of L-

type calcium channel containing free sulfhydryl groups to total

protien of L-type calcium channel in H9C2 cells incubated with

100 mmol/L NaHS by using Western blot. In the NaHS-treated

group and the DM-treated group, the ratio of L-type calcium

channel containing free sulfhydryl groups to total protein L-type

calcium channel in H9C2 cells decreased obviously, compared

with that of the control group (P,0.01, Fig. 4 and 5). In the

NaHS+DTT treated group, however, the decreased ratio of L-

type calcium channel containing free sulfhydryl groups to total L-

type calcium channel protein in H9C2 cells was significantly

reversed, compared with that of the NaHS group (P,0.01, Fig. 4

and 5A). Additionally, compared with that of NaHS group, the

decraesed ratio of L-type calcium channel containing free

sulfhydryl groups to total L-type calcium channel protein in

H9C2 cells was also significantly reversed in GSH+NaHS group

(P,0.01, Figure 5B).

Discussion

The results showed that the H2S donor inhibited the I Ca, L in

cardiomyocytes, which is accordant to the previous results [6]. It

was reported that H2S might directly inhibit voltage-gated Ca2+

channels in vascular smooth muscle by Zhao et al. in 2002 [14],

and it was also demonstrated that H2S was a novel inhibitor of L-

type calcium channels in cardiomyocytes through electrophysio-

logical measurements by Sun, et al. in 2009 [6]. Then, in 2011 Xu

et al. found that the L-type Ca2+ channel agonist Bay K8644 could

prevent from the electrophysiological effects of H2S by using a

standard intracellular microelectrode technique [15]. The above-

mentioned results suggested that H2S could serve as an inhibitor of

L-type calcium channels and the reduction in calcium influx might

contribute to the functional effects of H2S [15]. DTT, a reductant

which transforms disulfide bridges into sulfhydryl groups in

cysteine-containing proteins, could markedly reverse the H2S

donor-induced inhibition of I Ca, L in cardiomyocytes. However, in

the presence of DM, an oxidant which transforms sulfhydryl

groups into disulfide bridges, NaHS could not alter cardiac

function and L-type calcium currents. Furthermore, we found that

after we treated the isolated rat heart or the cardiomycytes with

DTT, NaHS could markedly alter cardiac function in isolated

perfused heart and L-type calcium currents in the cardiomyocytes.

Thus, the results suggest that the decrease in peak I Ca, L induced

by NaHS depend on the state of free sulfhydryl group. NaHS can

affect L-type calcium channels with the sulfhydryl group, but it

cannot affect those with the disulfide bonded cysteine groups.

H2S is determined to be a gasotransmitter alongside with NO

and CO since it is a colorless, water-soluble and lipid-soluble gas of

small size and can be endogenously generated and regulated by

specific enzymes. It has broad physiological effects, but its relaxing

effect on the cardiovascular system is unique [16]. Our in vitro

study demonstrated that H2S can generate negative inotropic

effects on the isolated rat heart. For example, NaHS (1026–

1023 mol/L) could inhibit the ventricular contractile function in a

concentration-dependent manner, and NaHS of 1023 mol/L

inhibited the coronary perfusive flow (CPF) and altered the left

ventricular pressure. Administration of NaHS to the rat heart

induced a transient negative cardiac inotropic effect and a

decrease in central venous pressure [17]. Consistent with the

results mentioned above, the present study confirmed that

perfusion of NaHS at a 100 mmol/L concentration significantly

decreased LV 6dp/dtmax and DLVP without changing heart rate

and CPF.

In accordance with the inhibition of ventricular contractile

function by the administration of NaHS, NaHS also inhibited I Ca,

L in rat cardiomyocytes in a concentration-dependent manner, but

without changing the channel dynamic characteristics (i.e., shift in

I–V relationship, activation and inactivation curves). The dynamic

characteristics of resting, activation and inactivation states of L-

type calcium channels could not be changed by H2S while the

recovery curve was inhibited, suggesting that H2S could quickly

occupy but then slowly dissociate from the L-type calcium

channels. The entry of Ca2+ via the L-type calcium channels

would trigger the opening of the calcium-releasing channels

located in the calcium stores of the SR, and the increase in
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intracellular Ca2+ concentration would induce the contraction of

cardiomyocytes. It has been reported [6] that H2S does not inhibit

the caffeine-induced increase in intracellular Ca2+ concentration

([Ca2+]i). We considered that H2S induced a local decrease in

[Ca2+]i by blocking the L-type calcium channels but not by the

calcium-releasing channels of SR, and the decrease in [Ca2+]i

would lead to the attenuated contraction of cardiomyocytes. Our

in vivo experiment gave the evidence that nifedipine pre-perfusion

could inhibit the negative cardiac inotropic effect exerted by H2S.

This result confirmed that the inhibition of ventricular contractile

Figure 3. Effects of H2S donor on I L, Ca modified by DM and DTT. A: DM significantly reduced the peak amplitude of I Ca, L in cardiomyocytes,
and the decrease by pre-treated with DM was basically constant and time-independent from the beginning through the final time point of 1 mmol/L
NaHS perfusion period. B: DTT did not change the peak I Ca L, while removal of DTT by washing out with a 1 mmol/L NaHS-containing solution could
decrease the peak I Ca, L significantly. C: NaHS induced a decrease in the peak I Ca, L, and this decrease promptly reversed by DTT.
doi:10.1371/journal.pone.0037073.g003
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function by H2S was probably mediated by blocking the L-type

calcium channels.

The substituted-cysteine accessibility method (SCAM) was

widely used to elucidate the functions of ion channels [18]. The

oxidation states of the sulfhydryl groups of the cysteine-containing

peptides and proteins are critical to stabilization of its structure

and function, and a special sulfhydryl modifier can localize

functional regions of the molecule. Sulfhydryl reagents are crucial

in SCAM. DTT is an effective sulfhydryl reductant that can

reduce disulfide bonds regardless of inter-chain or intra-chain

linkages [19]. DM is a commonly used sulfhydryl oxidizer since it

can promote formation of a disulfide bridge between two cysteine

residues when they are adjacent in the three-dimensional structure

of a protein [20]. In the present study we found that the L-type Ca

currents were decreased by 1 mmol/L DM, and the decrease

could be reversed by 5 mmol/L DTT, while either 1 mmol/L or

5 mmol/L DTT had no direct effect on I Ca, L. These results

suggest that the sulfhydryl groups on the L-type Ca2+ channels are

important gate sites that can be directly modified by sulfhydryl

reagents. L-type calcium channel on myocardiocytic membrane

consists of a pore-forming a1c subunit and regulatory a2, d and b
subunits [21]. The a1c subunit which determines the basic

electrophysiological properties and effect as a voltage sensor and

receptor for antagonists/agonists has free sulfhydryl groups [22],

while disulfide bonds are present between the a2 and d subunits

[23]. DM provides an oxidative environment which can form a

disulfide bridge to stabilize the three-dimensional structure of the

protein. Therefore, it can be proposed that the formation of

disulfide bonds in the a1 subunit is the site affected by DTT.

Studies on N-ethylmaleimide (NEM), chloramine-T (CL-T), 2, 2¢-

dithiodipyridine (DTDP) and 2, 2¢-dithio-bis-5-nitropyridine

(DTBNP) also showed a diminished effect on I Ca, L. Other

results also indicated sulfhydryl reagents could directly act on the

ion channel, since the effect was not due to either cAMP

production or G-protein-coupled regulation of L-type Ca2+

channels [12].

The present results confirmed that I Ca, L in the rat heart was

inhibited by H2S, and the thiol oxidant DM was observed to cause

a decrease in I Ca, L; and with pre-exposure to DM followed by

perfusion with H2S, the Ca2+ current did not change compared

with the control value. DTT had no direct effect on I Ca, L,

although it could reverse the inhibition of I Ca, L by NaHS. Since

free sulfhydryl groups on the L-type Ca2+ channels are the gate

sites, and they could be directly modified by hydrosulfuryl

reagents, H2S would have no targeting site since DM would have

already changed the oxidation state of the sulfhydryl groups of the

L-type Ca2+ channels and formed a disulfide bridge between

adjacent cysteine residues in the three-dimensional structure. If

H2S targets on the crucial free-sulfhydryl groups on the Ca2+

channel and inhibits the L-type calcium current, the inter-chain

disulfide bond linkages would be rapidly reduced by DTT, and

therefore the inhibition would be reversed. Thus, H2S appears to

function by activating a thiol oxidation mechanism that inhibits L-

type Ca2+ channels.

To further demonstrate if H2S targeted the sulfhydryl groups in

the L-type calcium channels in rat cardiomyocytes, we measured

the ratio of L-type calcium channel containing free sulfhydryl

groups to total L-type calcium channel protein in H9C2 cells

incubated with H2S donor by Western blot. After treatment with

H2S donor, the ratio of L-type calcium channel containing free

sulfhydryl groups to total L-type calcium channel protein in H9C2

cells decreased obviously. However, the decreased ratio of L-type

Figure 4. Effects of NaHS on the free sulfhydryl groups of L-type calcium channel in H9C2 cells, and a schematic picture showing L-
type calcium channel and the other protein molecules involved in myocardial contraction that might react with H2S with their
sulfhydryl groups. In the NaHS group, the L-type calcium channel containing free sulfhydryl groups/total protein of L-type calcium channel ratio in
H9C2 cells decreased obviously, compared with that of the control group. **P,0.01 vs control group.
doi:10.1371/journal.pone.0037073.g004
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calcium channel containing free sulfhydryl groups to total L-type

calcium channel protein in H9C2 cells was significantly reversed

by a thiol reductant DTT. Additionally, it was also reversed by

another thiol reductant GSH, suggesting that H2S could target the

sulfhydryl group, decreasing the reduced thiol of L-Ca2+ channel

in H9C2 cells, which could be reversed by thiol reductants.

We believe that the sulfhydryl groups on the cysteine-containing

proteins may play an important mechanistic role in the biological

effects of H2S on the cardiovascular system. Like L-type calcium

channels, the sulfhydryl groups of ATP-sensitive potassium

channels (KATP channels) also are the channel gate sites, and the

vasodilating effect ascribed to H2S to open KATP channels has

Figure 5. Effects of NaHS and sulfhydryl modifiers on the free sulfhydryl groups of L-type calcium channel in H9C2 cells. A: In NaHS
and DM group, the L-type calcium channel containing free sulfhydryl groups/total protein of L-type calcium channel ratio in H9C2 cells reduced
obviously, compared with that of the control group. **P,0.01 vs control group. In the NaHS+DTT group, the L-type calcium channel containing free
sulfhydryl groups/total protein of L-type calcium channel ratio in H9C2 cells was reversed significantly, compared with that of the NaHS group.
##P,0.01 vs NaHS group. B: In NaHS group, the L-type calcium channel containing free sulfhydryl groups/total protein of L-type calcium channel
ratio in H9C2 cells reduced obviously, compared with that of the control group. **P,0.01 vs control group. Compared with that of NaHS group, the L-
type calcium channel containing free sulfhydryl groups/total protein of L-type calcium channel ratio in NaHS+GSH group was reversed significantly.
mmP,0.01 vs NaHS group.
doi:10.1371/journal.pone.0037073.g005
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been elucidated. Endogenous H2S has been reported as a novel

inhibitor to suppress the proliferation of vascular smooth muscle

cells (VSMCs) through the mitogen-activated protein kinase

(MAPK) pathway [24]. Previous research found that the

MAPK/extracellular-signal-regulated kinase kinase 1, an up-

stream activator of the stress-activated protein kinase/c-Jun N-

terminal kinase pathway, is directly inhibited by cysteine

modification. Further studies are needed to reveal details of the

substantial role for thiol modification of specific protein targets

involved in the H2S-mediated biological effects.

Supporting Information

Figure S1 L-type Ca2+ current was affected by extracel-
lularly applied sulfhydryl modifying reagents. A: In the

DM-treated group. The peak I Ca, L markedly decreased,

compared with the control group. A rapid depression took place

at the beginning of the 5 min of extracellular application of

100 mmol/L DM, while the steady inhibitory effect of DM on I Ca,

L developed from 7 min after the drug perfusion. B: DTT elicited

almost no significant decrease in peak I Ca, L. However,

application of DTT had a very slow and slightly decreasing effect

on I Ca, L in a time-dependent manner when the perfusion time

was longer than 6 min. C: DTT almost completely reversed the

inhibition of DM on peak I Ca, L.

(TIF)
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