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Abstract

YopH is an exceptionally active tyrosine phosphatase that is essential for virulence of Yersinia pestis, the bacterium causing
plague. YopH breaks down signal transduction mechanisms in immune cells and inhibits the immune response. Only a few
substrates for YopH have been characterized so far, for instance p130Cas and Fyb, but in view of YopH potency and the
great number of proteins involved in signalling pathways it is quite likely that more proteins are substrates of this
phosphatase. In this respect, we show here YopH interaction with several proteins not shown before, such as Gab1, Gab2,
p85, and Vav and analyse the domains of YopH involved in these interactions. Furthermore, we show that Gab1, Gab2 and
Vav are not dephosphorylated by YopH, in contrast to Fyb, Lck, or p85, which are readily dephosphorylated by the
phosphatase. These data suggests that YopH might exert its actions by interacting with adaptors involved in signal
transduction pathways, what allows the phosphatase to reach and dephosphorylate its susbstrates.
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Introduction

Yersinia pestis, the bacterium responsible for plague, has caused

devastating pandemics in the past [1,2]. The bubonic plague is

transmitted to humans by blood-sucking fleas infected from animal

reservoirs, mostly rats and other rodents [3]. Once in the

organism, Yersinia presents tropism for lymphoid tissue, where

the bacterium proliferates rapidly in the extracellular space,

avoiding the host immune system and causing an intensive

lymphadenitis within 2 to 6 days [1,2]. Another variant, the

pneumonic plague, is caused by inhaled bacteria. This less usual

and even more dangerous form of plague is difficult to treat and

often results in death [4]. Although there are several treatments

available, such as vaccines [5,6] and antibiotics, they are not very

effective, especially against pneumonic plague. Moreover, Y. pestis

has started to be considered as a potential tool for bioterrorism due

to its rapid replication and effective-immune evading ability.

Y. pestis contains an extracromosomal 70-kb virulence plasmid

[7,8,9], which is essential for Yersinia pathogenity and encodes the

Yop (Yersinia outer proteins) effector proteins and the proteins

forming a type III secretion system. The direct injection of the

effector proteins by this secretion apparatus enables the bacterium

to survive and proliferate in the lymphoid tissues [10,11]. An

essential virulence factor of Yersinia is YopH, a 51-kd protein

tyrosine phosphatase (PTP) [12,13] with a C-terminal catalytic

domain that shares structural similarities to that of eukaryotic

PTPs [14], followed by a Pro-rich sequence and a multifunctional

N-terminal domain, which binds tyrosine phosphorylated target

proteins [15,16]. Bacterial injection of YopH into phagocytic cell

types causes the inhibition of the inflammatory response of the

host to the bacteria by processes such us disruption of focal

adhesions [17,18] and inhibition of phagocytosis [19,20], tumor

necrosis factor a release, and oxidative burst [21,22]. YopH also

impairs T and B lymphocyte function [23] at very early stages

preventing a successful adaptive immune response which is crucial

for the survival of the bacteria in the lymph nodes of the infected

host. Several proteins have been identified as YopH substrates in

different cell types. In epithelial cells, the adaptors p130Cas

(p130Crk-associated substrate) and paxilin, and the tyrosine kinase

FAK (focal adhesion kinase). In macrophages, p130Cas, Fyb (Fyn

binding protein) [24], SKAP-HOM (SKAP55 homologue) [25],

and Pyk, a tyroine kinase homologous of FAK. And in T-cells,

Lck, LAT, and SLP-76 [26,27]. The majority of these proteins fall

in two classes: tyrosine kinases and adaptors. Notably, these

proteins participate in pathways involved in phagocytosis and

activation of signal transduction in the early stages of the immune

response in haematopoietic cells.

Given the complex nature of the signalling pathways activated

in the immune responses and the numerous proteins involved, we

hypothesized that to inhibit the immune response with such

potency, YopH should have a wide specificity so it could target a

broad range of proteins. As a first approach to identify new YopH

substrates, we planned biochemical experiments to demonstrate

these interactions. Our results showed that YopH binds p85,

Gab1, Gab2, and Vav, although, YopH only dephosphorylated

p85. In this sense, we proposed that binding to the adaptors Gab1,
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Gab2 and Vav could localize YopH at sites where signalling

complexes are formed. By targeting these complexes, YopH

impairs the adequate immune response by the host. The findings

here described will help understand the molecular mechanisms

dependent on YopH that are used by Yersinia pestis to evade the

immune system.

Results and Discussion

YopH interacts with several proteins involved in
signalling pathways

YopH blocks the host immune response by targeting several

signalling pathways involved in activation of immune cells. This

highly active bacterial PTP inhibits phagocytosis, oxidative burst

associated with this process in macrophages and neutrophils, Ca2+

signalling in neutrophils, and antigen induced activation of

lymphocytes[28]. Integrin signalling initiated by binding of

Yersinia invasion to b1-integrin in the host cells, as well as

antigens through TCR (T-cell receptor) in lymphocytes, depend

on the activation of tyrosine kinases that phosphorylate a great

number of substrates involved in those pathways. Given the

potency of YopH to shut down these signalling pathways, we

considered that YopH could target additional proteins not

identified as yet. Having this in mind, we check by biochemical

methods the interaction of YopH with several signalling proteins

known to be expressed in hematopioetic cells. Thus, we expressed

several proteins in HEK293 cells and treated them with

pervanadate to induce their tyrosine phosphorylation. Lysates

were used in pull-down assays with 2 or 5 mg of a GST fusion

protein of YopH substrate trapping mutant, GST-YopH D356A.

We assayed several proteins for interaction with YopH, mainly

tyrosine kinases like Lck, Fyn, Csk, Zap-70, Syk and the regulatory

subunit of the PI3K, p85; and adaptors such as Gab1, Gab2, Cbl,

Fyb, Vav, and Grb2. We used Fyb and Lck as positive controls in

these assays, because they have been shown before to bind YopH

[24,26]. In our assays, GST-YopH D356A bound Fyb, Gab 1,

Gab 2, Lck, Vav and p85 (Fig. 1 A), while it did not bind the rest

of the proteins tested (data not shown). Some of those proteins,

LAT and Zap-70, have been shown to interact with YopH but we

have not been able to observe this association. Differences between

our data and those of Gerke et al. [27] could be explain by the

different technical approach used, pull-down versus immunipre-

cipitation of Yersinia infected T-cells. An alternative explanation is

also possible; the presence of those proteins in the precipitates

could be due to indirect interaction with other proteins present in

T-cells.

Although binding of these proteins to YopH was expected to be

mediated by tyrosine phosphorylation, we confirmed this finding

with another experiment in which the pull-down assay was carried

out with lysates from transfected HEK293 cells treated and left

untreated with pervanadate. As hown in Fig. 1.B, interaction

between YopH DA (D356A) is mainly detected when proteins are

phosphorylated on tyrosine. Only a slight interaction is observed

in the case of two proteins, Lck and Vav, in absence of

pervanadate, which it is probably due to the presence of some

phosphorylated tyrosine in the resting state, as it is the case of Lck

Y505.

YopH interacting proteins are not only substrates but
also adaptor proteins

To demonstrate that the proteins that bound YopH were

substrates of this phosphatase we carried out dephosphorylation

assays in vitro with recombinant GST-YopH produced in bacteria

using as control the inactive substrate trapping mutant GST-

YopH D356A. Contrary to our expectations, Gab1, Gab2 and

Vav were not dephosphorylated, even with incubations as long as

1 hour (Fig. 2A). On the other hand, as it has been shown before,

Lck and Fyb were dephosphorylated [24,26], although in the case

of Lck, with a lower efficiency. In this assay, we also detected p85

dephosphorylation by YopH, with almost the same efficiency than

Fyb. These data support the notion that YopH shows selectivity

for some proteins as demonstrated by other researchers [19,29].

Furthermore, we show that YopH is able to bind to some adaptor

proteins without dephosphorylating them, thus YopH could

associate with immune signalling complexes and, in this way, be

localized to the proximity of its substrates to dephosphorylate

them.

Different YopH domains are involved in the interaction
with the target proteins

YopH binds tyrosine phosphorylated proteins through two

domains, the N-terminal domain (amino acids 1–129) and the

catalytic domain (amino acids 193–468), which presents two

interaction sites, the catalytic pocket and a second site on the

opposite side of this domain [30]. Between these sites, there is a

Pro-rich region (PRR) that may bind to SH3 domains. To analyze

the interaction of YopH with the proteins studied here and based

on this domain structure and on the biochemical data related to

YopH substrate interaction, we generated four deletion mutants of

YopH: N129 (amino acids 1–129), N220 (amino acids 1–220),

C339 (amino acids 129–468), and C277 (amino acids 193–468)

(Fig. 3 A). These peptides were used as GST-fusion proteins in

pull-down assays using lysates from pervanadate stimulated cells.

Using this approach, we observed that Fyb, a well-known YopH

substrate, binds YopH through the N129 and the catalytic

domain. Gab1 and Gab2 also bind through both domains but

they do not bind to C227, indicating that, for binding, they

required additional amino acids present in the PRR. Taking into

account that Gab adaptors lack SH3 domain, association would

imply another mechanism not determined yet. In the case of Vav,

p85, and Lck, the stronger association was observed with the

deletion mutant C339, which contains the catalytic domain and

the Pro-rich region. All these proteins contain SH3 domains that

might interact with the YopH PRR, thus explaining why removal

of this region abrogates the interaction and why the N220

construct binds slightly to these proteins while the N129 domain

shows no binding at all. According to the data shown in Fig. 3B,

the proteins that bind to YopH can be divided into three groups: i)

proteins that interact with both the catalytic domain and the N129

domain (Fyb), ii) proteins that interact with the extended catalytic

domain, which includes PRR domain and the N129 domain

(Gab1 and Gab2), and iii) proteins that only bind to the extended

catalytic domain C339 (Lck, p85, and Vav).

YopH phosphatase domain is enough for the inhibition
of T cell activation

To determine how these deletion mutants affect signalling in

vivo, we overexpressed them in Jurkat T-cells along with reporter

plasmids that express the luciferase gene under the control of

different promoters relevant to T-cell activation: NFAT/AP1 and

NF-kB sites from the IL-2 promoter, and the minimal IL-2

promoter. In all the cases we obtained similar results (Fig. 4). N-

terminal domains did not inhibit activation of these reporters and

in the case of IL-2 promoter they even caused some increase over

the activation produced by the stimuli alone. This increase could

be due to some specific effect in which this peptide disrupts some

molecular interaction of the proteins here studied or, alternatively,

YopH Binds to Gab1&2,p85 & Vav
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to an unspecific effect. On the other hand, C-terminal domains

C278, which contains the PTP domain, and C339, which contains

the PTP domain and the Pro-rich sequence, inhibited the

activation of the reporters with a potency similar to the one

exerted by the whole protein. These results show that a long

exposure of cells to both YopH phosphatase and its catalytic

domain inhibits activation of signal transduction pathways.

Conclusions
In this work, we show the interaction of YopH with several

proteins expressed in hematopoietic cells and involved in signalling

transduction pathways, such as the adaptor proteins Gab1, Gab2;

the guanine nucleotide exchange factor (GEF) for Rho-family

GTPases, Vav; and p85, the regulatory subunit of the PI3Kinase.

The PI3K family is involved in the innate and adaptive immune

responses. Class I PI3Ks are heterodimers containing a regulatory

subunit, of which p85 is the most common, and a p110 catalytic

subunit. This class of PI3Kinases acts downstream of receptor

tyrosine kinases activated by stimuli such as cytokines, antigen

receptors (TCR, BCR, FcR), and Toll-like receptors [31,32]. PI3K

enzymes are involved in phagocytosis initiated by different pathways

in immune cells [31], therefore inhibition of this pathway by YopH

would inhibit uptake of Yersinia. Our data showing that p85 is

targeted by YopH provides additional information about the

Figure 1. Pull-down assays with GST-YopH D356A. A, HEK293 cells expressing different proteins, either untreated (control) or treated with
pervanadate (PV) to induce tyrosine phosphorylation of the proteins expressed, were lysed and probed for interaction with GST-YopH D346A or GST
(5 mg each) as a negative control in pull-down assays. The specific interaction of those proteins with GST-YopH D356A was detected by Western blot
with specific antibodies for Lck or Vav, and with anti-HA antibody for other proteins. B, As in A, HEK293 cells, expressing the same proteins and
treated with PV, were lysed and probed for interaction with two different amounts of GST-YopH D346A (5 and 2 mg) or GST (5 mg each) as a negative
control in pull-down assays. GST and GST-YopH D346A fusion protein used in these assays are shown at the lower panel from one representative blot.
TL denotes total lysates of the transfected cells and corresponds to a 10% of the amount used for each pull-down assay. Assays were done
independently for each protein.
doi:10.1371/journal.pone.0004431.g001
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mechanism by which YopH inhibits the PI3K/Akt pathway that

leads to the induction of MCP-1 and IL-2 cytokines in macrophages

and T cells [33], respectively. In this respect, p85 dephosphorylation

by YopH would impede the recruitment of monocytes, attracted by

the chemokine MCP-1, to the sites of Yersinia infection.

Gab1 and Gab2 belong to the Dos/Gab subfamily of scaffolds

and play important roles in the function of many hematopoietic

cell types. Gab1 and Gab2 are tyrosine phosphorylated upon

receptor engagement by antigens and cytokines [34]. Studies on

bone marrow–derived macrophages from Gab22/2 mice have

shown that this protein is involved in FccR-mediated phagocytosis.

Tyrosine phosphorylation of Gab1 and Gab2 after receptor

engagement allows association with p85 through its SH2 domains.

Therefore, by binding to Gab adaptors, YopH might target p85 or

other proteins recruited to the same signalling complex that quite

likely would regulate phagocytosis in the immune system. In our

hands, affinity of YopH for Gab adaptors is similar to the affinity

for another well known substrate of YopH, Fyb. This data would

indicate that in addition to binding directly to its substrates, YopH

binds to some adaptors, what would improve its ability to gain

access to substrates in signalling pathways. In other words, this

strategy would allow YopH to be at the place where signalling

complexes are formed to dephosphorylate its cognate substrates.

In addition to its function as GEF for Rho-GTPases that are

known to regulate the actin cytoskeleton, Vav may develop adaptor

like functions through the other domains present in its sequence [35].

Phosphorylation of Vav proteins has been reported in all hemato-

poietic cells downstream of immune receptors, including antigen

receptors (TCR, BCR, FceRI, FccRI/II/III), integrins, cytokine

receptors, and chemokine receptors. YopH does not dephosphorylate

Vav, what makes it likely the use of this protein by YopH to target

signalling proteins involved in activation of the cytoskeleton [36].

Our assays show that the PRR is involved in binding to most of

the proteins here studied. Only Fyb was able to bind to all the YopH

deletion mutants, in particular, it is the only protein that bound

clearly to the catalytic domain, C278. Then, YopH is able to bind

Fyb phosphorylated tyrosines either through the catalytic domain or

through the N129 substrate binding domain and to the Fyb SH3

domain through the PRR. Gab2 shows a slight binding to the C278

catalytic domain while Gab1 did not bind this peptide. The fact that

Gab proteins, which lack SH3 domains, bind to the C339 peptide

that contains the PRR in addition to the phosphatase domain

suggest that this PRR contributes notably to the interaction and this

binding might be mediated by a mechanism other than the

canonical association of SH3 domains with Pro motifs. The other 3

proteins here studied, Lck, Vav, and p85, bind mainly to YopH

through the C339 peptide and only weakly with the N220. From

our data, we can conclude than tyrosine phosphorylation is the

main requirement for YopH binding and although YopH PRR

contributes to this binding, its role is not clear at least in the case of

Gab proteins since this region increase association to YopH and

those proteins lack SH3 domains.

In summary, herein we present biochemical data supporting the

interaction of the Yersinia phosphatase YopH with Gab1, Gab2,

Vav, and the p85 regulatory subunit of PI3K. Only p85 was

dephosphorylated by YopH, suggesting that the other proteins are

used by YopH to target signalling complexes in the immune cells.

These results, here presented, broaden the knowledge about

substrate repertoire of YopH and help to understand YopH

inhibitory potency on cell host signalling pathways.

Materials and Methods

Antibodies and reagents
Tissue culture reagents were from Cambrex (Verviers, Belgium).

The 12CA5 anti-hemagglutinin (HA) monoclonal antibody (Ab)

was from Roche (Indianapolis, IN USA), anti-HA clone HA.11 was

from Covance (Berkely, CA USA), anti-GST (Glutathione S-

transferase) was from Santa Cruz Biotechnology Inc. (Santa Cruz,

CA USA), anti-b-actin mAb (monoclonal Ab) was from Sigma

Chemical Co. (St. Louis, MO USA). Anti-CD3 (UCHT1) and

CD28 (clone CD28.2) Ab were from BD Pharmingen (Franklin

Lakes, NJ USA). The anti-phosphotyrosine mAb 4G10 was from

Upstate Biotecnology, Inc. (Lake Placid, NY).

Plasmids and mutagenesis
Plasmids encoding HA-YopH and HA-YopH D356A and Lck

were described before [26], as well as p85 vector [37]. Fyb

expresion plasmid was kindly provided by Christopher E. Rudd,

Gab1 and Gab2 were generous gifts from Gen-Sheng Feng, and

Vav expression vector was kindly provided by Xose Bustelo.

Standard molecular biology techniques were used to generate the

different constructions used in this study. YopH deletions were

done by PCR using appropriate primers. Mutagenesis was

performed using the QuickChange site-directed mutagenesis kit

(Stratagene, San Diego, CA) as described by the manufacturer.

Figure 2. YopH dephosphorylation assay of several proteins. A, Dephosphorylation assay for HA-Gab1, HA-Gab2 and Vav at different time-
points, using 1 mg of GST-YopH or GST-YopH D356A. The assay was stopped by addition of sample buffer, and after SDS-PAGE, samples were
transferred to nitrocellulose and tyrosine phosphorylation was detected by Western blot with anti-phosphotyrosine antibody. B, Dephosphorylation
assay for HA-Fyb, Lck and HA-p85 was carried out as in A, but using shorter incubation times. Proteins used as substrates in these assays were
obtained from HEK293 transfected with the corresponding plasmids and treated with pervanadate. Proteins were immunoprecipitated and
distributed equally in different tubes for the several time-points of the assay.
doi:10.1371/journal.pone.0004431.g002
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Cell culture and transfections
Jurkat T leukemia cells were kept at logarithmic growth in

RPMI 1640 medium supplemented with 10% fetal bovine serum,

2 mM L-glutamine, 1 mM sodium pyruvate, nonessential amino

acids, 100 U/ml penicillin G, and 100 mg/ml streptomycin.

Transfection of Jurkat T cells was performed by electroporation

as described previously (14, 15). HEK293 were maintained at

37uC in DMEM Dulbecco’s modified Eagle’s medium supple-

mented with 10% fetal bovine serum, 2 mM L-glutamine, 100 U/

ml penicillin G, and 100 mg/ml streptomycin. For transient

transfection, HEK293 cells were transfected using the calcium

phosphate precipitation method (16).

Figure 3. Pull-down assays with different deletion mutants of YopH. A, Schematic diagram showing the different deletion mutants of YopH
used in this study. B, HEK293 cells expressing different proteins and treated with pervanadate (PV) to induce tyrosine phosphorylation of the proteins
expressed were lysed and probed for interaction with GST-YopH D/A (mutation D346A), the different deletion mutants shown in A fused to GST, and
GST (5 mg each) as a negative control in pull-down assays. The specific interaction of those proteins with YopH fragments was detected by Western
blot with specific antibodies for Lck and Vav, and with anti-HA antibody for other proteins. An independent experiment was done for each protein.
The lower panel shows a representative blot from one of the experiments to show that similar amounts of GST proteins were used in these assays.
doi:10.1371/journal.pone.0004431.g003
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Immunoprecipitation, GST pull-down, SDS PAGE and
immunoblotting

These procedures were done as reported before (14). Briefly, cells

were lysed in lysis buffer: 20 mM Tris/HCl, pH 7.5, 150 mM

NaCl, 5 mM EDTA containing 1% NP-40, 1 mM Na3VO4,

10 mg/ml aprotinin and leupeptin, and 1 mM phenylmethylsul-

phonyl fluoride. Lysates were clarified by centrifugation at

15,000 rpm for 10 min. The clarified lysates were preabsorbed on

protein G-Sepharose (GE Healthcare) and then incubated with

antibody for 2 h, followed by overnight incubation with protein G-

Sepharose beads. Immune complexes were washed three times in

lysis buffer and resuspended in SDS sample buffer. Proteins resolved

by SDS-PAGE were transferred to nitrocellulose membrane, which

were immunoblotted with optimal dilutions of specific Abs followed

by the appropriate anti-IgG-peroxidase-conjugate. Blots were

developed by the enhanced chemiluminescence technique (ECL

kit, GE Healthcare) according to the manufacturer’s instructions.

Pull-down of GST fusion proteins was done with Glutathione-

Sepharose beads (GE Healthcare) incubated with the clarified

lysates for 2 hr. Then the complexes were washed and processed as

explained above for the immunoprecipitation.

In vitro dephosphorylation assay
HEK293T cells were transfected with the indicated plasmids to

produce the proteins used as substrates and cells were treated with

pervanadate to induce tyrosine phosphorylation of proteins. Cells

were lysed in lysis buffer and the clarified lysates were

immunoprecipitated with the appropriate antibodies. Washed

immunocomplexes were incubated with 1 mg of YopH or YopH

D356A at 4uC during the indicated times. Dephosphorylation of

proteins in the immunocomplexes was detected by Western blot

using the 4G10 antibody.

Luciferase Assays—Transfection of Jurkat T cells and assays

for luciferase activity were performed as described previously (28–

30). Briefly, 206106 Jurkat cells were transfected with 10 mg empty

pEF5HA vector alone or YopH plasmids, along with 2 mg of

NFAT/AP-1-luc (or other reporters) and 1 mg of a Renilla

luciferase reporter for normalization. Cells were stimulated with

anti-TCR plus anti-CD28 antibodies 24 hr after transfection for

the last 6 hr. Cells were lysed then and processed to measure the

luciferase activity with the Dual Luciferase system (Promega)

according to the manufacturer’s instructions.

Statistics—For statistical analysis of data, unpaired Student’s t

test was performed (PRISM version 4.0; GraphPad) as appropri-

ate. Values of p,0.05 were considered significant.
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