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Abstract

Background: Nontyphoidal Salmonellae frequently cause life-threatening bacteremia in sub-Saharan Africa. Young children
and HIV-infected adults are particularly susceptible. High case-fatality rates and increasing antibiotic resistance require new
approaches to the management of this disease. Impaired cellular immunity caused by defects in the T helper 1 pathway
lead to intracellular disease with Salmonella that can be countered by IFNc administration. This report identifies the
lymphocyte subsets that produce IFNc early in Salmonella infection.

Methodology: Intracellular cytokine staining was used to identify IFNc production in blood lymphocyte subsets of ten
healthy adults with antibodies to Salmonella (as evidence of immunity to Salmonella), in response to stimulation with live
and heat-killed preparations of the D23580 invasive African isolate of Salmonella Typhimurium. The absolute number of
IFNc-producing cells in innate, innate-like and adaptive lymphocyte subpopulations was determined.

Principal Findings: Early IFNc production was found in the innate/innate-like lymphocyte subsets: cd-T cells, NK cells and
NK-like T cells. Significantly higher percentages of such cells produced IFNc compared to adaptive ab-T cells (Student’s t
test, P,0.001 and #0.02 for each innate subset compared, respectively, with CD4+- and CD8+-T cells). The absolute numbers
of IFNc-producing cells showed similar differences. The proportion of IFNc-producing cd-T cells, but not other lymphocytes,
was significantly higher when stimulated with live compared with heat-killed bacteria (P,0.0001).

Conclusion/Significance: Our findings indicate an inherent capacity of innate/innate-like lymphocyte subsets to produce
IFNc early in the response to Salmonella infection. This may serve to control intracellular infection and reduce the threat of
extracellular spread of disease with bacteremia which becomes life-threatening in the absence of protective antibody. These
innate cells may also help mitigate against the effect on IFNc production of depletion of Salmonella-specific CD4+-T
lymphocytes in HIV infection.
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Introduction

Nontyphoidal strains of Salmonella (NTS), in particular Salmonella

enterica Typhimurium and Enteritidis (S. Typhimurium and S.

Enteritidis) are a major cause of invasive disease, especially bacteremia

and meningitis, in Africa [1,2,3,4,5,6,7,8,9,10]. Children under two

years of age [3,6,8] and HIV-infected adults [7,9] are particularly

susceptible and case-fatality rates for NTS bacteremia are high, being

over 20% in children [6,8] and up to 50% in adults [7]. A lack of

typical clinical presentation for invasive NTS disease and affordable

timely diagnostics [6,8,11], together with increasing levels of multi-

drug resistance [4,5,11,12] underlie the urgent need for new

approaches to treat NTS.

In order to develop a vaccine against NTS, an improved

understanding of the relevant modalities of protective immunity is

required. We have previously shown the importance of antibody

for complement-mediated cell-independent killing of NTS in the

peripheral blood of young African children [3]. This protection
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can be lost in HIV-infected adults due to the presence of high titers

of anti-LPS antibodies that block killing of Salmonella by antibodies

against outer membrane proteins [13]. In addition to their

capacity for extracellular survival, Salmonellae are facultative

intracellular bacteria and their ability to survive within cells is

essential for virulence [14]. The high susceptibility of individuals

with chronic granulomatous disease, who lack normal phagocyte

oxidative burst function, to infection with Salmonellae [15,16]

indicates the importance of cellular immune mechanisms against

Salmonella in man. Therefore it is likely that control of intracellular

infection moderates release of bacteria into body fluids and hence

the dependence on antibodies against outer membrane proteins

that protect against extracellular disease. Effective protection by a

vaccine is likely to be achieved best by eliciting both these elements

without inducing blocking antibodies. We have also recently

demonstrated the importance of antibody acting as an opsonin for

phagocyte cellular immunity against NTS in African children [17].

It is well established that IFNc is a key cytokine for inducing

mouse [18,19,20] and human [21,22] macrophages to kill

Salmonella through both oxidative burst and nonoxidative mech-

anisms. The importance of IFNc in immunity to Salmonella in man

is demonstrated by the heightened susceptibility of individuals with

genetic deficiencies in the T helper 1 pathway, also known as the

interleukin-(IL)12/23-interferon(IFNc) axis, to recurrent infection

with NTS [23,24,25,26]. In those patients where the genetic defect

is in the IL-12 or IL-12R genes [27,28,29] and in individuals with

chronic granulomatous disease [30], subcutaneous IFNc has

successfully been used as an adjunct to antibiotic therapy in the

treatment of invasive Salmonella disease. The presence of protective

antibodies in these patients is the likely reason for the infections

being manifest as local inflammatory lesions rather than fatal

bacteremia or meningitis [24].

Additional support for an essential role for IFNc in immunity to

Salmonella comes from the mouse model of Salmonella infection.

IFNc-receptor-deficient mice are highly susceptible to attenuated

Salmonella Typhimurium [31], as are mice that have been

pretreated with antibodies to IFNc [32,33,34,35] or IL-12 [36].

Administration of recombinant IFNc enhances killing of Salmonella

in mice [32] and restores resistance to attenuated Salmonella after

depletion of endogenous IL-12 using neutralizing anti-cytokine

antibodies [36]. Blood levels of IFNc increase both in Salmonella

infections in mice [37,38,39,40,41] and in humans, particular in

the case of systemic disease [42].

The course of untreated HIV infection is characterized by the

loss of CD4+-T cells. Secretion of T helper 1 cytokines, in

particular IFNc, decreases during the course of HIV infection [43]

and correlates with CD4 count [44]. There is downregulation of

IFNc production in both CD4+- and CD8+-T cell subsets [45] and

a switch from a predominantly T helper 1 to a T helper 2 response

[46]. In vitro infection of CD4+-T cells with HIV also results in

downregulation of IFNc expression [47], while commencement of

HIV-infected patients on antiretroviral therapy leads to an

increase in IFNc production [48]. This reduction in IFNc levels

could, at least in part, account for the strong clinical association

between invasive NTS disease and HIV/AIDS in Africa.

The clear importance for IFNc in immunity to Salmonella and

the ability of multiple lymphocyte subsets to produce this cytokine

[24], led us to study IFNc production in peripheral blood cells of

healthy humans. We used intracellular cytokine staining (ICS) to

identify the lymphocyte subsets that produce IFNc when

stimulated with NTS. We investigated lymphocytes in the innate

arm of the immune system that do not use classical MHC-

restricted antigen recognition (NK cells, cd-T cells and NK-like T

cells) as well as lymphocytes responsible for acquired cellular

responses (CD4+- and CD8+-T cells). Identification of the cells that

secrete this key cytokine will help in the design of new therapies

against NTS.

Materials and Methods

Ethical Approval
Ethical approval for the use of anonymized blood samples in

this study was granted by the Life and Health Sciences Ethical

Review Committee of the University of Birmingham. Informed

written consent was obtained from all participants.

Blood samples
Anonymized blood samples were obtained from healthy adults (5

male:5 female; ages 21 to 41 years). Blood samples anticoagulated

with sodium heparin at 4 IU/ml and EDTA (collected in EDTA-

anticoagulated tubes, Becton Dickinson, UK) were used for

intracellular cytokine staining (ICS) and conventional immunophe-

notyping respectively. Serum, separated and stored in aliquots at

-80uC immediately after clotting, was used for studies of humoral

immunity.

Salmonella
The invasive Malawian S. Typhimurium isolate D23580 was used

in all studies. Its genome has been sequenced at the Wellcome Trust

Sanger Institute [12]. For experiments involving live Salmonella,

D23580 was grown to log phase, washed twice with phosphate

buffered saline (PBS) and added to heparin-anticoagulated whole

blood or serum at 1/10th of the final volume giving 106 viable

bacteria/ml. When required, the bacteria were heat-killed by

incubating at 72uC for one hour. In the flow-cytometric antibody

assay, D23580 in log growth phase was fixed with 1% formaldehyde

in PBS. A whole-cell homogenate of D23580 was produced by

disrupting washed D23580 using a Mini-Beadbeater (Biospec

Products) as previously described [49]. This homogenate, at a final

concentration of 10 mg/ml, was used to stimulate cells in heparinized-

whole blood. Protein content of homogenates was determined by

bicinchoninic acid (BCA) protein assay (Thermo Scientific).

Intracellular cytokine staining
Half ml aliquots of heparin-anticoagulated blood were stimu-

lated with S. Typhimurium D23580 within one hour of collection

in 15 ml tubes at 37uC for six hours unless otherwise specified. At

the time of stimulation, 5 ml CD28/CD49d co-stimulatory

antibodies (Becton Dickinson) was added to each tube, including

control tubes, in order to ensure that lack of costimulation did not

limit the production of cytokines, in particular, by ab-T cells. 10 ml

Brefeldin A (Becton Dickinson) diluted 1:10 with PBS was added

to each tube after 2 hours. As positive control, blood was

stimulated with phorbol 12-myristate 13-acetate (PMA) and

ionomycin (both Sigma, UK) at final concentrations of 10 ng/ml

and 1 mg/ml respectively. Negative control tubes were stimulated

with PBS in place of Salmonella.

After the six hour stimulation period, adherent cells were

resuspended by the addition of 50 ml EDTA (Becton Dickinson) to

each tube. 50 ml aliquots of stimulated blood were incubated with

a three-color panel of monoclonal antibodies (all Becton

Dickinson) to the following cell-surface antigens in order to

discriminate lymphocyte subsets and activated cells: PerCP-Cy5.5-

conjugated CD4, CD8 or CD3 and APC-conjugated CD3, TCR-

cd or CD56, with PE-conjugated CD69 to indicate activated cells.

Red cells were lysed with 10 volumes of 1X FACS Lysing Solution

(Becton Dickinson) and samples washed with PBS 0.5% BSA prior

to permeabilizing with 5 volumes of 1X FACS Permeabilizing

IFNc Response to Salmonella
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Solution 2 (Becton Dickinson). Following a further wash with PBS

0.5% BSA, samples were incubated with the fourth color

monoclonal antibody, FITC-conjugated anti-IFNc antibody or

an isotype control antibody followed by a final wash and

resuspended in PBS 1% formaldehyde. Sample data were

acquired and analyzed on a FACSCalibur flow cytometer using

CellQuest Pro software (both Becton Dickinson). CD4+-T cells

were defined as CD3+CD4+, CD8+-T cells as CD3+CD8+, cd-T

cells as CD3+TCRcd+, NK cells as CD3-CD56+ and NK-like T

cells as CD3+CD56+ lymphocytes.

Immunophenotyping
Conventional immunophenotyping for lymphocyte subset analysis

was performed on 50 ml samples of EDTA-anticoagulated blood as

previously described using the following combinations of monoclonal

antibodies (all Becton Dickinson): 1) TCRcd-FITC, CD4-PE, CD8-

PerCP-Cy5.5, CD3-APC; 2) CD56-PE, CD3-PerCP-Cy5.5, CD19-

APC. Sample data were acquired and analyzed on a FACSCalibur

flow cytometer using CellQuest Pro software. Tube 2 was also used

for internal quality assurance to check that the sum of T, B and NK

lymphocyte subset percentages was within 10066%. Absolute

lymphocyte subset counts were calculated as the product of the

subset percentage and total lymphocyte count determined on a

standard laboratory hematological analyzer.

Monocyte activation assay
The ability of IFNc, produced during the stimulation of whole

blood with Salmonella, to activate monocytes, was assessed by

stimulating fresh blood with plasma prepared from the whole blood

stimulations and measuring CD38 expression on monocytes in these

fresh blood samples. In order to allow the secretion of newly-

synthesized IFNc into the plasma, whole blood (or plasma, as

control) was stimulated with Salmonella or PBS (negative control) as

described above, but without the addition of Brefeldin A. After six

hours, plasmas were collected by centrifugation and bacteria

removed by sterilizing through 0.2 mm filters. 200 ml of each

plasma was added to 500 ml fresh heparin-anticoagulated blood and

incubated at 37uC for five hours. 50 ml samples of blood were

labeled as described above, but using CD38-PE and CD14-APC

antibodies. Monocytes were discriminated by CD14 against side-

scatter histogram, and CD38 expression designated as the

geometric mean fluorescent intensity (GMFI) in the FL2 histogram.

Serum bactericidal assay and anti-Salmonella antibody
assay

The serum bactericidal assay for the ability of serum to kill S.

Typhimurium D23580 and flow cytometric assay for measure-

ment of titer of anti-D23580 IgG and IgM were as previously

described [3]. Briefly, viable D23580 in log growth phase at a 1/

10th volume was added to serum in a final volume of 100 ml and

final concentration of 106 cfu/ml. Killing of Salmonella at 37uC was

measured over a three hour time course. For Salmonella-specific

antibody determination, serum diluted 1:10 with PBS was mixed

with 1/10th volume of formaldehyde-fixed D23580 at a final

concentration of 26108 bacteria/ml, prior to detection of bound

antibody with FITC-conjugated anti-human IgG and IgM (Sigma)

and acquisition and analysis of data by flow cytometry.

Statistical methods
Student’s t test was used to compare percentages and absolute

numbers of IFNc-producing cells in different lymphocyte subsets.

Log-transformation was used to normalize absolute cell counts

within subsets.

Results

Detection of IFNc-production by peripheral blood
lymphocytes in response to stimulation with Salmonella
using an optimized intracellular cytokine staining
technique

We looked for IFNc production by healthy adult peripheral

blood lymphocytes stimulated with S. Typhimurium homogenate

and PMA (Figure 1). Background numbers of IFNc-producing

cells were typically less than 0.1% (Figure 1A–B), while positive

control PMA-stimulated cells gave responses of between 20% and

50% IFNc-producing cells (Figure 1C–D). Cells producing IFNc
in response to stimulation with NTS also expressed the early

activation antigen CD69, though not all CD69+ lymphocytes

produced IFNc (Figure 1E–F).

Kinetics of IFNc production by peripheral blood
lymphocytes in response to stimulation with Salmonella

IFNc production by different lymphocyte subsets was examined

in relation to duration of stimulation with Salmonella homogenate

in the blood of healthy adult donors using the ICS method

described (Figure 2). Little, if any, cytokine production was

detected after two hours of stimulation, though by four hours IFNc
production was present in cells of all four subsets examined: CD4+-

, CD8+- and cd-T cells, and NK cells. The percentage of IFNc-

producing cells plateaued at six hours for CD8+- and cd-T cells,

and NK cells (Figure 2B–D). By contrast, this percentage

continued to increase over the next two hours for CD4+-T cells

(Figure 2A). Based on these findings, we choose to stimulate blood

with Salmonella for six hours in subsequent ICS assays. The

percentage of IFNc-producing cells was markedly higher in the

cd-T cells and NK cells subsets compared with CD4+- and CD8+-

T cells.

Immunity to Salmonella in peripheral blood from healthy
adult donors

In order to provide an indication of the prior immunity and/or

exposure to NTS in the ten anonymized healthy adult blood

donors, we performed flow cytometric antibody assays to

determine titers of IgG and IgM against S. Typhimurium isolate

D23580 and serum bactericidal assays with D23580 (Figure 3).

Sera from all ten donors contained anti-D23580 antibodies

(.1.5 U) in the form of IgG or IgM or both classes of antibody.

All sera were able to effect an approximately 90% or greater kill (1

log10 kill) of Salmonella in the serum bactericidal assay indicating

that these anti-Salmonella antibodies are functional.

IFNc-production by peripheral blood lymphocyte subsets
in response to stimulation with Salmonella

Next we investigated the response of blood lymphocytes from

the ten healthy adult donors to stimulation with live S.

Typhimurium D23580 for six hours (Figure 4A). Over this time

course, significantly higher percentages of the innate/innate-like

lymphocyte subsets (NK cells, NK-like T cells and cd-T cells)

produced IFNc compared with the adaptive T cell subsets (CD4+-

and CD8+-T cells), despite evidence of prior exposure to Salmonella

in these donors from the studies of their humoral immune

response. Using Student’s t test, P,0.001 was obtained for

difference in percentage of IFNc-producing cells in each innate

and innate-like lymphocyte subset compared with percentage of

IFNc-producing CD4+-T cells. P#0.02 was obtained for differ-

ence in percentage of IFNc-producing cells in each innate/innate-

like lymphocyte subsets compared with CD8+-T cells.

IFNc Response to Salmonella
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Figure 1. Detection of IFNc-producing lymphocytes by flow cytometry following stimulation with Salmonella. Dot plots of CD4+-T cells
(A, C and E) and cd-T cells (B, D and F) from human peripheral blood from one healthy adult, either unstimulated (A and B), or stimulated with PMA (C
and D) or S. Typhimurium D23580 homogenate (E and F), showing intracellular production of IFNc and expression of CD69. Numbers within gates
indicate percentage of IFNc-producing cells. Each dot represents one cell.
doi:10.1371/journal.pone.0013667.g001
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IFNc-production by peripheral blood lymphocyte subsets
in response to stimulation with live compared with heat-
killed Salmonella

Previous reports indicate a difference in immune response to

Salmonella depending on whether the bacteria are alive or dead

[39,50,51]. To assess this in the context of the current study, IFNc
production by lymphocyte subsets stimulated with heat-killed

D23580 was compared to that by cells stimulated with live D23580

(Figure 4B). No significant difference was found in the percentage of

IFNc-producing cells in each lymphocyte subset (t test, P.0.2),

except for cd-T cells where markedly reduced IFNc-producing cells

were generated by stimulation with dead bacteria (t test, P,0.0001).

Ability of IFNc produced by peripheral blood
lymphocytes to stimulate blood monocytes

In order to give an indication of whether IFNc produced by

peripheral blood lymphocytes in the ICS assays was functional, we

measured the ability of plasmas from whole blood stimulated with

Salmonella to activate monocytes. CD38 was chosen as an indicator

of monocyte activation, because it is strongly upregulated on

human monocytes by IFNc, but not by other monocyte-activating

factors, including other cytokines such as TNFa and GM-CSF,

and bacterial components such as LPS [52]. Surface expression of

CD38 on monocytes in four blood samples was measured by flow

cytometry following 5 hours of stimulation with plasmas derived

Figure 2. Kinetics of IFNc production by peripheral blood lymphocytes in response to stimulation with Salmonella. Percentage of IFNc-
producing CD69+ (A) CD4+-T cells, (B) CD8+-T cells, (C) cd-T cells and (D) NK cells over an eight hour time course following stimulation with S.
Typhimurium D23580 homogenate added at 0 hours with addition of Brefeldin A at 2 hours. Data are mean 6 sd of three experiments.
doi:10.1371/journal.pone.0013667.g002

IFNc Response to Salmonella

PLoS ONE | www.plosone.org 5 October 2010 | Volume 5 | Issue 10 | e13667



from Salmonella-whole blood stimulation assays. Mean GMFI

expression of CD38 was 469 compared with 352 for monocytes

from blood samples stimulated with plasma from unstimulated

blood (negative control) (P = 0.004) (Figure 5).

In order to ensure that raised CD38 expression was not due to

direct bacterial stimulation, plasmas from whole blood stimulation

assays were sterilized through 0.2 mm filters before adding to fresh

blood samples. To confirm that bacterial components such as LPS

in the plasmas were not the cause of raised monocyte CD38

expression, we also stimulated fresh whole blood with plasma

samples that had been separated from cells prior to incubating

with Salmonella for 6 hours (plasma control). Mean CD38

expression on monocytes from these samples was 374 and was

significantly lower than observed with blood stimulated by plasmas

collected from whole blood stimulated with Salmonella (P = 0.0001),

but was no different to CD38 expression on monocytes in blood

incubated with plasma from unstimulated blood (Figure 5).

Absolute numbers of IFNc-producing lymphocytes in
peripheral blood in response to stimulation with
Salmonella

While our experiments so far show the proportion of

lymphocytes in each subset producing IFNc, we wanted to

determine the absolute numbers of IFNc-producing cells for each

lymphocyte subset in peripheral blood. To do this, we first

measured the absolute numbers of each lymphocyte subset,

calculated from the percentage of each subset within the

lymphocyte population by conventional immunophenotyping

and the total lymphocyte count from the hematological analyzer.

Then, the absolute numbers of IFNc-producing lymphocytes was

assessed as the product of each absolute count and percentage

IFNc-producing cells (Table 1).

Geometric mean absolute counts for IFNc-producing cells were

approximately 10-fold lower for CD4+-T cells (1 cell/ml) and

CD8+-T cells (3 cells/ml) compared with the innate/innate-like

subsets (cd-T cells 14 cell/ml, NK cells 25 cells/ml, NK-like T cells

5 cells/ml). Although a wide range of total IFNc-producing

lymphocytes (16 to 278 cells/ml) was found in peripheral blood

across the ten donors, absolute numbers of IFNc-producing

lymphocytes in innate/innate-like subsets were significantly higher

than those in the adaptive subsets (geometric means: 50 compared

with 7 cells/ml, t test P,0.001).

Discussion

In the present study, we have used intracellular cytokine

staining to examine the production of IFNc by different

lymphocyte subsets in response to stimulation with S. Typhimur-

ium D23580, a well-characterized invasive African strain of NTS

[12]. Having previously established an importance for antibody in

protecting against NTS in Africans [3,17], we wanted to

investigate the cellular arm of the immune response to Salmonella

in man. Since T helper 1 cell immunity is key for protection

against invasive Salmonella disease [24] and IFNc is the pre-

eminent effector T helper 1 cytokine, we focused our attention on

production of this cytokine.

Our choice of studying cytokine production in ex vivo peripheral

blood was partly pragmatic, in view of the limited scope for in vivo

studies of infection in man. Since the commonest presentation of

invasive NTS disease in Africans is bacteremia, in vitro study of

infection in peripheral blood arguably provides a reasonable

model of this clinical problem. It could also be argued that a

principal requirement for IFNc in Salmonella infection is within the

secondary lymphoid tissues, particularly in the context of recurrent

intracellular infection observed in individuals with genetic T

helper 1 pathway deficiencies. Investigation of IFNc levels in man

in such tissues would be difficult to conduct. The relatively short

duration of the experimental model (hours as opposed to days)

reflects the rapid time-course of invasive NTS disease in vivo.

Approximately half of all African children who die from acute

NTS bacteremia do so within the first 24 to 48 hours of admission

(unpublished findings). This is similar to the length of time

Figure 3. Anti-Salmonella antibody content and Salmonella-
killing ability of serum from peripheral adult blood. (A) Anti-S.
Typhimurium D23580 IgG and (B) anti-D23580 IgM titers determined by
flow cytometry compared with Salmonellae D23580-killing ability
determined by serum bactericidal assay at 180 minutes using serum
prepared from peripheral blood from ten healthy adults. Negative
values on y axis indicate reduction in viable Salmonellae with -1.0
corresponding to a 90% reduction in viable Salmonellae [3]. Each
symbol corresponds to serum from one individual.
doi:10.1371/journal.pone.0013667.g003
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required for a positive blood culture result where facilities for this

exist.

Previous studies on cytokine production in response to Salmonella

infection have tended to focus on a limited number of lymphocyte

subsets and few studies have been performed on human tissue. We

wanted to understand the immune response of a broader range of

lymphocyte subsets. In particular, we sought to examine whether

there were differences in responses between the innate/innate-like

subsets compared to lymphocyte subsets of the acquired immune

response (the TCR-ab lymphocytes). Further subdivision of these

subsets could be performed with a flow cytometer equipped with

more than four fluorescence detector channels. Nevertheless, the

panel of markers used in this study permitted us to differentiate the

principle subsets of the T and NK lymphocyte lineages and to

distinguish between innate and adaptive cells. Since lymphocyte

subset sizes can vary considerably between individuals [53], we

also wanted to determine absolute as well as relative numbers of

IFNc-producing cells in response to stimulation with Salmonella.

The principle finding of this study is the high inherent capacity

within the innate immune system for IFNc production relative to

the adaptive immune system in response to NTS, even when

peripheral blood from adults with evidence of existing immunity

and/or prior exposure to Salmonella is examined. This latter point

is important, since it reduces the possibility that the relative lack of

acquired lymphocytes responsive to Salmonella was the result of

immune naivety towards Salmonella, though higher levels of

Salmonella-specific ab-T lymphocytes would be expected among

Africans where exposure to Salmonella is likely to be much higher.

Figure 4. IFNc production by lymphocyte subsets in response to stimulation with live and heat-killed Salmonella. Percentages of IFNc-
producing lymphocyte subsets in peripheral blood from ten healthy adults following 6 hours of stimulation with (A) live and (B) heat-killed S.
Typhimurium D23580. Each dot corresponds to the percentages of IFNc-producing cells in each lymphocyte subset in blood from one individual.
CD3+CD4+: CD4+-T cells; CD3+CD8+: CD8+-T cells; CD3+TCRcd+: cd-T cells; CD32CD56+: NK cells; CD3+CD56+: NK-like T cells.
doi:10.1371/journal.pone.0013667.g004

IFNc Response to Salmonella
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In relation to percentages of cells in each subset that produce

IFNc, cd-T cells, NK cells and NK-like T cells had significantly

higher percentages of IFNc-producing cells than CD4+- and

CD8+-T cells. Given their smaller overall sizes, it is even more

striking that when absolute cell counts are examined, the numbers

of IFNc-producing innate/innate-like subsets are still dominant.

Geometric mean values for IFNc-producing cell counts in the

innate/innate-like subsets (14, 25 and 8 cells/ml) are higher than

those for the classical adaptive subsets (1 and 3 cells/ml), with a 7-

fold overall difference in IFNc-producing cells between the two

broad categories (7 cells/ml for adaptive lymphocytes and 50 cells/

ml for innate/innate-like cells).

Whilst our understanding of Salmonella infections in individuals

with genetic deficiencies of the T helper 1 pathway demonstrates

the importance of T helper 1 immunity and IFNc for protection

against Salmonella, it does not indicate which of the IFNc-

producing cell subsets are needed for this protection. Our finding

of capacity within the innate system for IFNc production suggests

that during acute infections with Salmonella, this capacity may

suffice and priming of the acquired T cell response through prior

exposure/infection or vaccination may not be essential. The

functionality of the secreted IFNc demonstrated by the upregula-

tion of CD38 expression on blood monocytes adds further

significance to these observations.

Using the mouse model of Salmonella infection, IFNc production

has been demonstrated in a variety of individual lymphocyte

subsets. A strong T helper 1 response is characteristic of S.

Typhimurium infection in the mouse, with a large expansion in

numbers of activated IFNc-secreting CD4+- and CD8+-T cells in

the blood, though this response takes a week to develop during

primary infection [54,55,56]. However, splenic cells from mice

with severe combined immunodeficiency (SCID) that lack T cells

produce elevated levels of IFNc after stimulation with S.

Typhimurium [57], suggesting that NK or other innate cells are

responsible for IFNc production. NK cell numbers are elevated

post infection with Salmonella [58,59,60] and are an early source of

IFNc [59] and mice depleted of NK cells show diminished

Figure 5. Effect of plasma from Salmonella stimulation of whole
peripheral blood on monocyte CD38 expression. Plasma from S.
Typhimurium-stimulated whole blood (NTS stimulated) was separated
and filter-sterilized prior to adding to fresh blood for five hours followed
by measurement of CD38 expression on monocytes. CD38 expression
was significantly higher than for blood incubated with plasma taken
from unstimulated blood (NC) or for blood incubated with plasma
stimulated with NTS in the absence of cells (plasma control). P values
are from Student’s t test. Data are from four experiments.
doi:10.1371/journal.pone.0013667.g005

Table 1. Percentage and absolute numbers of IFNc-producing cells in different lymphocyte subsets in peripheral blood from ten
healthy adults following stimulation with Salmonella.

CD4+-T cells CD8+-T cells cd-T cells NK cells NK-like T cells IFNc+ Cell Count

(CD3+CD4+) (CD3+CD8+) (CD3+TCRcd+) (CD32CD56+) (CD3+CD56+)

Donor Count
%
IFNc+

IFNc+
Count Count

%
IFNc+

IFNc+
Count Count

%
IFNc+

IFNc+
Count Count

%
IFNc+

IFNc+
Count Count

%
IFNc+

IFNc+
Count

Acq
lymp

Innate
lymp

Total
lymph

1 957 1.08 10 805 2.29 18 143 14.3 20 157 29.68 47 90.4 3.1 3 29 70 99

2 733 0.36 3 527 9.66 51 144 17.27 25 632 28.35 179 110 18.27 20 54 224 278

3 671 0.36 2 367 0.26 1 54 6.30 3 104 7.46 8 57.90 1.70 1 3 12 16

4 651 0.18 1 387 0.00 0 372 17.42 65 246 4.30 11 55.90 6.18 3 1 79 80

5 544 0.00 0 486 3.05 15 126 11.98 15 122 8.25 10 135 9.72 13 15 38 53

6 829 0.03 0 593 2.28 14 76.1 16.68 13 258 16.99 44 62.80 9.83 6 14 63 76

7 583 0.00 0 424 1.10 5 66.5 22.89 15 334 7.40 25 47.50 5.44 3 5 42 47

8 502 0.13 1 399 1.46 6 102 12.21 12 375 6.69 25 592 6.64 39 6 77 83

9 1200 0.36 4 612 0.26 2 94.2 6.3 6 355 7.46 27 155 13.45 21 6 53 59

10 591 0.18 1 244 0.00 0 50.9 17.42 9 175 4.30 8 42.1 1.70 1 1 17 18

Geometric
Mean

0.22 1 0.84 3 14.30 14 12.1 25 7.60 5 7 50 60

For each lymphocyte subset in the peripheral blood of each subject, the absolute concentration of cells (Count; cells/ml), percentage of IFNc-producing cells (%IFNc+)
and absolute numbers of IFNc-producing cells (IFNc+ Count; cells/ml) following stimulation for six hours with live S. Typhimurium D23580 were determined by
intracellular cytokine staining and a hematological analyzer. All adaptive lymphocytes (Acq lymph; CD4+-and CD8+-T cells), innate lymphocytes (Innate lymp; cd-T cells,
NK cells and NK-like T cells), together with total numbers of IFNc-producing lymphocytes are shown in the right-hand columns. Geometric means are for average
percentages and absolute numbers of cells across all subjects.
doi:10.1371/journal.pone.0013667.t001
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resistance to Salmonella infection [58,61]. Human NK cells have

also been shown to produce IFNc in vitro in response to stimulation

with Salmonella and to clear macrophages of Salmonella infection

[61].

An important subset in the innate response to NTS is the cd-T

cell subset. Since these cells can produce both innate and adaptive

responses, it is probably more accurate to describe them as ‘innate-

like’, since although in the current study they are most likely

mounting an innate response, they have the capacity to respond

specifically through their T cell receptors. Expansion of the cd-T

cell subset in peripheral blood has been found during Salmonella

infection in man, particularly with systemic disease [62], as has

enlargement of the NK-like T cell subset [63]. cd-T cells from

patients with Salmonella infection produce high levels of IFNc [42].

Likewise, increased numbers of cd-T cells are found in murine

salmonellosis [60,64,65,66], particularly in the peritoneal cavity,

and these produce IFNc in response to Salmonella-infected

macrophages. Depletion of cd-T cells in the mouse results in

increased susceptibility to Salmonella infection [67].

While the response of other subsets investigated was indepen-

dent of whether live or dead bacteria were used for stimulation, it

is intriguing that a much higher proportion of cd-T cells produced

IFNc in response to live Salmonella compared with heat-killed

Salmonella. The necessity of live Salmonella for induction of a T

helper 1 response in the mouse has previously been described

[39,50,68] and attributed to better IL-12 induction by live bacteria

[51]. Our finding in relation to IFNc production by cd-T cells in

man suggests that the cd-T cell subset may have an important role

in protecting individuals from acute Salmonella infections.

IFNc production by the innate arm of the immune system

produces a rapid response that may be key in controlling the early

stages of infection. This, by itself, may not always be sufficient to

clear Salmonella infection in man and prevention of persistent

infection in the macrophage beds that can lead to recrudescence of

infection. Studies in the mouse indicate that ab-T cells are not

required during the first week of Salmonella infection [69,70] and

IFNc is produced in response to IL12 and IL18 in rag2/2 and

SCID mice that lack T cells [71]. These findings all support the

concept that cells other than ab-T cells are responsible for

production of the IFNc required for survival in the first week of

Salmonella infection. Nevertheless, mice lacking ab-T cells fail to

clear Salmonella and die later during Salmonella infection

[31,70,72,73,74,75]. Surprisingly, this clearance does not appear

to involve IFNc, since depletion of this cytokine from day 6 of

Salmonella infection in the mouse does not prevent bacterial

clearance [76]. This raises the possibility that in many instances

IFNc-production by ab-T cells is not required for immunity to

Salmonella. In contrast, IL-2 has been found to enhance clearance

of Salmonella in the mouse raising the possibility that this cytokine is

more important than IFNc during the late response to Salmonella

infection [77].

Our study has potential implications in relation to the reduction

of IFNc levels seen in HIV infection and the high susceptibility of

Africans living with HIV/AIDS to NTS bacteremia. Since HIV

targets cells that express CD4, especially CD4+-T cells, and

decreased IFNc production in the context of HIV infection occurs

in cells of the acquired immune system [45,47] the finding of

inherent capacity for IFNc production among innate cells could be

exploited to therapeutic advantage. Expansion of non-CD4-

expressing cells of the innate immune system with IFNc-producing

capacity, in particular NK cells and cd-T cells, could compensate

for lost IFNc production by CD4+-T cells, particularly in

advanced HIV/AIDS. This could be used both in the prevention

and treatment of invasive NTS disease in such individuals.

Our present findings indicate that the innate cellular arm of the

immune system has an inherent capacity for production of IFNc.

Taken in the context of other work on the role of antibody in

protection against NTS bacteremia, these findings suggest that the

primary requirement of a vaccine against NTS should be the

induction of a protective antibody response against these bacteria.

Without such antibody, serum bactericidal function [3] and the

opsonic activity required for phagocyte cell function [17] are both

abrogated leaving children vulnerable to both extracellular and

intracellular growth of Salmonella. Prevention of persistent

Salmonella infection with recrudescent disease, as commonly found

in HIV-infected Africans [7], is also an important goal of

vaccination and this may require the development of a robust

adaptive cellular response to NTS. Further insight into the need

for this will be gained through the study of at-risk populations

where the disease is most prevalent: young children and HIV-

infected adults in sub-Saharan Africa.

Acknowledgments

The authors would like to thank Mr Timothy Plant, Mr John Pravin and

the staff at the Clinical Immunology Service, University of Birmingham,

for technical help. We are grateful to Professor Robert S. Heyderman for

helpful comments on the manuscript.

Author Contributions

Conceived and designed the experiments: TSN AES WLM MTD CAM.

Performed the experiments: TSN AES CAM. Analyzed the data: TSN

AES WLM MTD CAM. Wrote the paper: CAM.

References

1. Morpeth SC, Ramadhani HO, Crump JA (2009) Invasive non-Typhi Salmonella

disease in Africa. Clin Infect Dis 49: 606–611.

2. Sigauque B, Roca A, Mandomando I, Morais L, Quinto L, et al. (2009)

Community-acquired bacteremia among children admitted to a rural hospital in

Mozambique. Pediatr Infect Dis J 28: 108–113.

3. MacLennan CA, Gondwe EN, Msefula CL, Kingsley RA, Thomson NR, et al.

(2008) The neglected role of antibody in protection against bacteremia caused by

nontyphoidal strains of Salmonella in African children. J Clin Invest 118:

1553–1562.

4. Gordon MA, Graham SM, Walsh AL, Wilson L, Phiri A, et al. (2008) Epidemics

of invasive Salmonella enterica serovar Enteritidis and S. enterica serovar

Typhimurium infection associated with multidrug resistance among adults and

children in Malawi. Clin Infect Dis 46: 963–969.

5. Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, et al. (2006)

Characterisation of community acquired non-typhoidal Salmonella from bacter-

aemia and diarrhoeal infections in children admitted to hospital in Nairobi,

Kenya. BMC Microbiol 6: 101.

6. Brent AJ, Oundo JO, Mwangi I, Ochola L, Lowe B, et al. (2006) Salmonella

bacteremia in Kenyan children. Pediatr Infect Dis J 25: 230–236.

7. Gordon MA, Banda HT, Gondwe M, Gordon SB, Boeree MJ, et al. (2002) Non-

typhoidal Salmonella bacteraemia among HIV-infected Malawian adults: high

mortality and frequent recrudescence. AIDS 16: 1633–1641.

8. Graham SM, Molyneux EM, Walsh AL, Cheesbrough JS, Molyneux ME, et al.

(2000) Nontyphoidal Salmonella infections of children in tropical Africa. Pediatr

Infect Dis J 19: 1189–1196.

9. Gilks CF, Brindle RJ, Otieno LS, Simani PM, Newnham RS, et al. (1990) Life-

threatening bacteraemia in HIV-1 seropositive adults admitted to hospital in

Nairobi, Kenya. Lancet 336: 545–549.

10. Mtove G, Amos B, von Seidlein L, Hendriksen I, Mwambuli A, et al. (2010)

Invasive salmonellosis among children admitted to a rural Tanzanian hospital

and a comparison with previous studies. PLoS One 5: e9244.

11. Nadjm B, Amos B, Mtove G, Ostermann J, Chonya S, et al. (2010) WHO

guidelines for antimicrobial treatment in children admitted to hospital in an area

of intense Plasmodium falciparum transmission: prospective study. BMJ 340: c1350.

12. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, et al. (2009)

Epidemic multiple drug resistant Salmonella Typhimurium causing invasive

disease in sub-Saharan Africa have a distinct genotype. Genome Res 19:

2279–2287.

IFNc Response to Salmonella

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13667



13. MacLennan CA, Gilchrist JJ, Gordon MA, Cunningham AF, Cobbold M, et al.

(2010) Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-
infected African adults. Science 328: 508–512.

14. Fields PI, Swanson RV, Haidaris CG, Heffron F (1986) Mutants of Salmonella

Typhimurium that cannot survive within the macrophage are avirulent. Proc

Natl Acad Sci U S A 83: 5189–5193.

15. Mouy R, Fischer A, Vilmer E, Seger R, Griscelli C (1989) Incidence, severity,
and prevention of infections in chronic granulomatous disease. J Pediatr 114:

555–560.

16. Lazarus GM, Neu HC (1975) Agents responsible for infection in chronic

granulomatous disease of childhood. J Pediatr 86: 415–417.

17. Gondwe EN, Molyneux ME, Goodall M, Graham SM, Mastroeni P, et al.
(2010) Importance of antibody and complement for oxidative burst and killing of

invasive nontyphoidal Salmonella by blood cells in Africans. Proc Natl Acad

Sci U S A in press.

18. Kagaya K, Watanabe K, Fukazawa Y (1989) Capacity of recombinant c-
interferon to activate macrophages for Salmonella-killing activity. Infect Immun

57: 609–615.

19. Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC

(2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible
nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing

by activated peritoneal macrophages in vitro. J Exp Med 192: 227–236.

20. Foster N, Hulme SD, Barrow PA (2003) Induction of antimicrobial pathways

during early-phase immune response to Salmonella spp. in murine macrophages:
c-interferon (IFNc) and upregulation of IFNc receptor alpha expression are

required for NADPH phagocytic oxidase gp91-stimulated oxidative burst and
control of virulent Salmonella spp. Infect Immun 71: 4733–4741.

21. Janssen R, Van Wengen A, Verhard E, De Boer T, Zomerdijk T, et al. (2002)

Divergent role for TNF-a in IFN-c-induced killing of Toxoplasma gondii and

Salmonella Typhimurium contributes to selective susceptibility of patients with
partial IFNc receptor 1 deficiency. J Immunol 169: 3900–3907.

22. Gordon MA, Jack DL, Dockrell DH, Lee ME, Read RC (2005) c-interferon

enhances internalization and early nonoxidative killing of Salmonella enterica

serovar Typhimurium by human macrophages and modifies cytokine responses.
Infect Immun 73: 3445–3452.

23. Jouanguy E, Doffinger R, Dupuis S, Pallier A, Altare F, et al. (1999) IL-12 and

IFNc in host defense against mycobacteria and Salmonella in mice and men. Curr
Opin Immunol 11: 346–351.

24. MacLennan C, Fieschi C, Lammas DA, Picard C, Dorman SE, et al. (2004)
Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in

humans. J Infect Dis 190: 1755–1757.

25. Bustamante J, Boisson-Dupuis S, Jouanguy E, Picard C, Puel A, et al. (2008)

Novel primary immunodeficiencies revealed by the investigation of paediatric
infectious diseases. Curr Opin Immunol 20: 39–48.

26. van de Vosse E, van Dissel JT, Ottenhoff TH (2009) Genetic deficiencies of

innate immune signalling in human infectious disease. Lancet Infect Dis 9:
688–698.

27. Altare F, Lammas D, Revy P, Jouanguy E, Doffinger R, et al. (1998) Inherited
interleukin 12 deficiency in a child with Bacille Calmette-Guerin and Salmonella

Enteritidis disseminated infection. J Clin Invest 102: 2035–2040.

28. de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, et al. (1998) Severe

mycobacterial and Salmonella infections in interleukin-12 receptor-deficient
patients. Science 280: 1435–1438.

29. Picard C, Fieschi C, Altare F, Al-Jumaah S, Al-Hajjar S, et al. (2002) Inherited

interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients
from six kindreds. Am J Hum Genet 70: 336–348.

30. Ezekowitz RA, Dinauer MC, Jaffe HS, Orkin SH, Newburger PE (1988) Partial
correction of the phagocyte defect in patients with X-linked chronic

granulomatous disease by subcutaneous interferon-c. N Engl J Med 319:
146–151.

31. Hess J, Ladel C, Miko D, Kaufmann SH (1996) Salmonella Typhimurium aroA-
infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-ab
cells and IFNc in bacterial clearance independent of intracellular location.
J Immunol 156: 3321–3326.

32. Muotiala A, Makela PH (1990) The role of IFNc in murine Salmonella

Typhimurium infection. Microb Pathog 8: 135–141.

33. Mastroeni P, Villarreal-Ramos B, Hormaeche CE (1992) Role of T cells, TNFa
and IFNc in recall of immunity to oral challenge with virulent Salmonellae in mice
vaccinated with live attenuated aro- Salmonella vaccines. Microb Pathog 13:

477–491.

34. Gulig PA, Doyle TJ, Clare-Salzler MJ, Maiese RL, Matsui H (1997) Systemic

infection of mice by wild-type but not Spv- Salmonella Typhimurium is enhanced
by neutralization of c-interferon and tumor necrosis factor-a. Infect Immun 65:

5191–5197.

35. Nauciel C, Espinasse-Maes F (1992) Role of c-interferon and tumor necrosis

factor-a in resistance to Salmonella Typhimurium infection. Infect Immun 60:
450–454.

36. Mastroeni P, Harrison JA, Robinson JH, Clare S, Khan S, et al. (1998)

Interleukin-12 is required for control of the growth of attenuated aromatic-

compound-dependent Salmonellae in BALB/c mice: role of c-interferon and
macrophage activation. Infect Immun 66: 4767–4776.

37. Ramarathinam L, Shaban RA, Niesel DW, Klimpel GR (1991) c-interferon

(IFNc) production by gut-associated lymphoid tissue and spleen following oral

Salmonella Typhimurium challenge. Microb Pathog 11: 347–356.

38. Matsui K, Arai T (1992) The comparison of cell-mediated immunity induced by

immunization with porin, viable cells and killed cells of Salmonella Typhimurium.

Microbiol Immunol 36: 269–278.

39. Thatte J, Rath S, Bal V (1993) Immunization with live versus killed Salmonella

Typhimurium leads to the generation of an IFNc-dominant versus an IL-4-

dominant immune response. Int Immunol 5: 1431–1436.

40. Eckmann L, Fierer J, Kagnoff MF (1996) Genetically resistant (Ityr) and

susceptible (Itys) congenic mouse strains show similar cytokine responses

following infection with Salmonella Dublin. J Immunol 156: 2894–2900.

41. Pie S, Truffa-Bachi P, Pla M, Nauciel C (1997) Th1 response in Salmonella

Typhimurium-infected mice with a high or low rate of bacterial clearance. Infect

Immun 65: 4509–4514.

42. Mizuno Y, Takada H, Nomura A, Jin CH, Hattori H, et al. (2003) Th1 and

Th1-inducing cytokines in Salmonella infection. Clin Exp Immunol 131: 111–117.

43. Kedzierska K, Crowe SM (2001) Cytokines and HIV-1: interactions and clinical

implications. Antivir Chem Chemother 12: 133–150.

44. Bailer RT, Holloway A, Sun J, Margolick JB, Martin M, et al. (1999) IL-13 and

IFNc secretion by activated T cells in HIV-1 infection associated with viral

suppression and a lack of disease progression. J Immunol 162: 7534–7542.

45. Imami N, Antonopoulos C, Hardy GA, Gazzard B, Gotch FM (1999)

Assessment of type 1 and type 2 cytokines in HIV type 1-infected individuals:

impact of highly active antiretroviral therapy. AIDS Res Hum Retroviruses 15:

1499–1508.

46. Clerici M, Shearer GM (1993) A TH1—.TH2 switch is a critical step in the

etiology of HIV infection. Immunol Today 14: 107–111.

47. Fan J, Li P, Kok TW, Burrell CJ (1997) AZT blocks down-regulation of IL-2 and

IFNc gene expression in HIV acutely infected cells. Arch Virol 142: 1035–1043.

48. Kelleher AD, Sewell WA, Cooper DA (1999) Effect of protease therapy on

cytokine secretion by peripheral blood mononuclear cells (PBMC) from HIV-

infected subjects. Clin Exp Immunol 115: 147–152.

49. Cunningham AF, Gaspal F, Serre K, Mohr E, Henderson IR, et al. (2007)

Salmonella induces a switched antibody response without germinal centers that

impedes the extracellular spread of infection. J Immunol 178: 6200–6207.

50. Pashine A, John B, Rath S, George A, Bal V (1999) Th1 dominance in the

immune response to live Salmonella Typhimurium requires bacterial invasiveness

but not persistence. Int Immunol 11: 481–489.

51. John B, Rajagopal D, Pashine A, Rath S, George A, et al. (2002) Role of IL-12-

independent and IL-12-dependent pathways in regulating generation of the

IFNc component of T cell responses to Salmonella Typhimurium. J Immunol 169:

2545–2552.

52. Musso T, Deaglio S, Franco L, Calosso L, Badolato R, et al. (2001) CD38

expression and functional activities are up-regulated by IFNc on human

monocytes and monocytic cell lines. J Leukoc Biol 69: 605–612.

53. Mandala WL, MacLennan JM, Gondwe EN, Ward SA, Molyneux ME, et al.

(2010) Lymphocyte subsets in healthy Malawians: implications for immunologic

assessment of HIV infection in Africa. J Allergy Clin Immunol 125: 203–208.

54. Mittrucker HW, Kohler A, Kaufmann SH (2002) Characterization of the

murine T-lymphocyte response to Salmonella enterica serovar Typhimurium

infection. Infect Immun 70: 199–203.

55. Srinivasan A, Foley J, McSorley SJ (2004) Massive number of antigen-specific

CD4 T cells during vaccination with live attenuated Salmonella causes interclonal

competition. J Immunol 172: 6884–6893.

56. Ugrinovic S, Menager N, Goh N, Mastroeni P (2003) Characterization and

development of T-Cell immune responses in B-cell-deficient (Igh-6(-/-)) mice

with Salmonella enterica serovar Typhimurium infection. Infect Immun 71:

6808–6819.

57. Ramarathinam L, Niesel DW, Klimpel GR (1993) Salmonella Typhimurium

induces IFNc production in murine splenocytes. Role of natural killer cells and

macrophages. J Immunol 150: 3973–3981.

58. Schafer R, Eisenstein TK (1992) Natural killer cells mediate protection induced

by a Salmonella aroA mutant. Infect Immun 60: 791–797.

59. Harrington L, Srikanth CV, Antony R, Shi HN, Cherayil BJ (2007) A role for

natural killer cells in intestinal inflammation caused by infection with Salmonella

enterica serovar Typhimurium. FEMS Immunol Med Microbiol 51: 372–380.

60. Hirose K, Nishimura H, Matsuguchi T, Yoshikai Y (1999) Endogenous IL-15

might be responsible for early protection by natural killer cells against infection

with an avirulent strain of Salmonella Choleraesuis in mice. J Leukoc Biol 66:

382–390.

61. Lapaque N, Walzer T, Meresse S, Vivier E, Trowsdale J (2009) Interactions

between human NK cells and macrophages in response to Salmonella infection.

J Immunol 182: 4339–4348.

62. Hara T, Mizuno Y, Takaki K, Takada H, Akeda H, et al. (1992) Predominant

activation and expansion of Vc9-bearing cd-T cells in vivo as well as in vitro in

Salmonella infection. J Clin Invest 90: 204–210.

63. Jason J, Buchanan I, Archibald LK, Nwanyanwu OC, Bell M, et al. (2000)

Natural T, cd, and NK cells in mycobacterial, Salmonella, and human

immunodeficiency virus infections. J Infect Dis 182: 474–481.

64. Emoto M, Danbara H, Yoshikai Y (1992) Induction of cd-T cells in murine

salmonellosis by an avirulent but not by a virulent strain of Salmonella

Choleraesuis. J Exp Med 176: 363–372.

65. Nishimura H, Hiromatsu K, Kobayashi N, Grabstein KH, Paxton R, et al.

(1996) IL-15 is a novel growth factor for murine cd-T cells induced by Salmonella

infection. J Immunol 156: 663–669.

IFNc Response to Salmonella

PLoS ONE | www.plosone.org 10 October 2010 | Volume 5 | Issue 10 | e13667



66. Skeen MJ, Ziegler HK (1993) Induction of murine peritoneal cd-T cells and

their role in resistance to bacterial infection. J Exp Med 178: 971–984.
67. Mixter PF, Camerini V, Stone BJ, Miller VL, Kronenberg M (1994) Mouse T

lymphocytes that express a cd-T cell antigen receptor contribute to resistance to

Salmonella infection in vivo. Infect Immun 62: 4618–4621.
68. Harrison JA, Villarreal-Ramos B, Mastroeni P, Demarco de Hormaeche R,

Hormaeche CE (1997) Correlates of protection induced by live Aro- Salmonella

Typhimurium vaccines in the murine typhoid model. Immunology 90: 618–625.

69. Hormaeche CE, Mastroeni P, Arena A, Uddin J, Joysey HS (1990) T cells do not

mediate the initial suppression of a Salmonella infection in the RES. Immunology
70: 247–250.

70. Weintraub BC, Eckmann L, Okamoto S, Hense M, Hedrick SM, et al. (1997)
Role of ab- and cd-T cells in the host response to Salmonella infection as

demonstrated in T-cell-receptor-deficient mice of defined Ity genotypes. Infect
Immun 65: 2306–2312.

71. Mastroeni P, Clare S, Khan S, Harrison JA, Hormaeche CE, et al. (1999)

Interleukin 18 contributes to host resistance and c-interferon production in mice
infected with virulent Salmonella Typhimurium. Infect Immun 67: 478–483.

72. O’Brien AD, Metcalf ES (1982) Control of early Salmonella Typhimurium growth

in innately Salmonella-resistant mice does not require functional T lymphocytes.
J Immunol 129: 1349–1351.

73. Mittrucker HW, Kohler A, Mak TW, Kaufmann SH (1999) Critical role of

CD28 in protective immunity against Salmonella Typhimurium. J Immunol 163:
6769–6776.

74. Sinha K, Mastroeni P, Harrison J, de Hormaeche RD, Hormaeche CE (1997)
Salmonella Typhimurium aroA, htrA, and aroD htrA mutants cause progressive

infections in athymic (nu/nu) BALB/c mice. Infect Immun 65: 1566–1569.

75. Nauciel C (1990) Role of CD4+ T cells and T-independent mechanisms in
acquired resistance to Salmonella Typhimurium infection. J Immunol 145:

1265–1269.
76. Muotiala A, Makela PH (1993) Role of c-interferon in late stages of murine

salmonellosis. Infect Immun 61: 4248–4253.
77. al-Ramadi BK, Al-Dhaheri MH, Mustafa N, Abouhaidar M, Xu D, et al. (2001)

Influence of vector-encoded cytokines on anti-Salmonella immunity: divergent

effects of interleukin-2 and tumor necrosis factor-a. Infect Immun 69:
3980–3988.

IFNc Response to Salmonella

PLoS ONE | www.plosone.org 11 October 2010 | Volume 5 | Issue 10 | e13667


