
Novel Multiple Markers to Distinguish Melanoma from
Dysplastic Nevi
Guohong Zhang1,2, Gang Li1*

1 Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British

Columbia, Canada, 2 Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China

Abstract

Background: Distinguishing melanoma from dysplastic nevi can be challenging.

Objective: To assess which putative molecular biomarkers can be optimally combined to aid in the clinical diagnosis of
melanoma from dysplastic nevi.

Methods: Immunohistochemical expressions of 12 promising biomarkers (pAkt, Bim, BRG1, BRMS1, CTHRC1, Cul1, ING4,
MCL1, NQO1, SKP2, SNF5 and SOX4) were studied in 122 melanomas and 33 dysplastic nevi on tissue microarrays. The
expression difference between melanoma and dysplastic nevi was performed by univariate and multiple logistic regression
analysis, diagnostic accuracy of single marker and optimal combinations were performed by receiver operating
characteristic (ROC) curve and artificial neural network (ANN) analysis. Classification and regression tree (CART) was used to
examine markers simultaneous optimizing the accuracy of melanoma. Ten-fold cross-validation was analyzed for estimating
generalization error for classification.

Results: Four (Bim, BRG1, Cul1 and ING4) of 12 markers were significantly differentially expressed in melanoma compared
with dysplastic nevi by both univariate and multiple logistic regression analysis (p , 0.01). These four combined markers
achieved 94.3% sensitivity, 81.8% specificity and attained 84.3% area under the ROC curve (AUC) and the ANN classified
accuracy with training of 83.2% and testing of 81.2% for distinguishing melanoma from dysplastic nevi. The classification
trees identified ING4, Cul1 and BRG1 were the most important classification parameters in ranking top-performing
biomarkers with cross-validation error of 0.03.

Conclusions: The multiple biomarkers ING4, Cul1, BRG1 and Bim described here can aid in the discrimination of melanoma
from dysplastic nevi and provide a new insight to help clinicians recognize melanoma.
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Introduction

Malignant melanoma is one of the most aggressive malignancies

in humans with an estimated total of 48,000 fatalities worldwide

per year, and the incidence of melanoma continues to rise [1].

Since melanoma is very resistant to conventional chemotherapy

with only 14 percent of patients with metastatic melanoma survive

for 5 years [2], it accounts for almost 75% of deaths related to skin

cancer.

The accuracy of melanoma diagnosis is critical for the

containment of the malignancy and the stage at diagnosis is a

significant factor related to melanoma-specific survival [3]. If

melanoma patients were misdiagnosed they might be inadequately

treated and potentially be at risk for regional or systemic spread

[4]. However, distinguishing malignant melanoma from dysplastic

nevi remained problematic due to the wide variation in

morphologic features. Dysplastic nevi often have some clinical

and histologic features that overlap with melanoma, such as an

irregular border, the asymmetric distribution of pigmentation,

cytologic atypia and dermal inflammatory response [5–7]. The

clinical picture, dermatoscopy and molecular or genetic testing

often cannot distinguish a histological dysplastic nevus from a

melanoma [8]. Therefore, a subset of melanomas may easily be

misdiagnosed to be dysplastic or Spitz nevi [9,10]. One of the

reasons for clinical misdiagnosis is that distinctive biomarkers

between melanoma and dysplastic nevi are absent.

So far, despite S100 immunostaining with the 97–100%

sensitivity and 75–87% specificity, additional higher specificity

markers such as HMB-45 (69–93%), and MART-1/Melan-A (75–

92%) have been used to assist in the differential diagnosis for

melanoma [11]. However, melanocytic lesions including dysplastic

nevi also stain positive for S100, MART-1/Melan-A and HMB-45

[12,13]. These markers were not useful in separating melanoma

from dysplastic nevi [14]. In additional, there were subsets of

melanoma cases without staining for S100 protein, HMB-45, and

MART-1/Melan-A [15]. To overcome these limitations, there is

now a strong rationale to add more specific immunohistochemical

markers to reliably distinguish melanoma from dysplastic nevi.
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Furthermore, artificial neural network (ANN) and classification

tree methods offer comprehensive model to find and verify

predictor variables to improve overall specificity and sensitivity to

discriminate melanoma from dysplastic nevi. The ANN is a

powerful computational tool imitating human neuronal systems,

and it has shown ability to determine complex relationships

between variables with high predictive accuracies on blind data

[16]. Classification tree presents a decision tree, which is intuitive

and facilitates the allocation of patients into subgroups by

following the flow-chart form that is simple to interpret and may

be applied at the bedside [17].

As the diagnosis of melanoma can be challenging sometimes,

the application of melanoma tissue microarray (TMA) datasets

may lead to the identification of previously unrecognized markers.

Our previous studies found that 12 markers including pAkt, Bim,

BRG1, BRMS1, CTHRC1, Cul1, ING4, MCL1, NQO1, SKP2,

SNF5 and SOX4 were associated with melanoma progression

[18–29]. In this present study, we attempted to assess these 12

putative markers to identify which can be optimally combined to

aid in the discrimination of melanoma from dysplastic nevi.

Materials and Methods

Study Population and Tissue Microarrays
Formalin-fixed and paraffin-embedded biopsies were obtained

from the 1990–1998 archives of the Department of Pathology,

Vancouver General Hospital. TMA were constructed as previ-

ously described [18]. Briefly, using core diameters of 0.6 mm

taken from the paraffin blocks, assembled using a tissue-array

instrument (Beecher Instruments, Silver Spring, MD), and cut with

a Leica microtome (Leica Microsystems Inc, Bannockburn, IL).

The tissue microarray consisted of 51 dysplastic nevi, 74 primary

melanomas without distant metastasis, and 48 metastatic melano-

mas, including 20 were obtained from lymph nodes and 28 from

other metastatic organs. For 122 melanomas, 28 melanomas were

located in sun-exposed sites (head and neck), and 94 were located

Figure 1. Representative images of immunochemistry staining of dysplastic nevi and melanoma. (a) Dysplastic nevi with strong BRMS1
staining; (b) Dysplastic nevi with weak Cul1 staining; (c) Melanoma with weak BRMS1 staining; (d) Melanoma with strong Cul1 staining. Magnification,
6200.
doi:10.1371/journal.pone.0045037.g001
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in sun-protected sites (other locations). In the 74 primary

melanoma, there were 44 male and 30 female, with age ranging

from 21 to 93 years (median, 60 years), and for 48 cases of

metastatic melanomas, there were 34 male and 14 female, with

age ranging from 27 to 89 years (median, 59 years). The use of

human skin tissues and the waiver of patient consent in this study

were approved by the Clinical Research Ethics Board of the

University of British Columbia.

Immunohistochemistry
TMA slides were baked at 55uC for 30 minutes and dewaxed

with three consequent 5-min washes with xylene. Then the

rehydrated tissues were performed by a series of 5-min washes in

100%, 95%, and 80% ethanol, followed by two washes in distilled

water. Antigen retrieval was performed by heating the samples at

95uC for 30 minutes in 10 mM sodium citrate (pH 6.0). After

inactivating the endogenous peroxidase by incubating in 3%

hydrogen peroxide for 30 minutes and blocking with universal

blocking serum for 30 minutes (Dako Diagnostics, Carpinteria,

CA), then TMA slides were incubated with primary antibody

[rabbit polyclonal anti-pAkt (1:100 dilution; Cell Signaling

Technology, Beverly, MA); rabbit polyclonal anti-Bim (1:50

dilution; NeoMarkers, Fremont, CA); rabbit polyclonal anti-

BRG1 (1:100 dilution; Santa Cruz Biotechnology, Santa Cruz,

CA); rabbit polyclonal anti-CTHRC1 (4 mg/mL final concentra-

tion; Immunochem Pharmaceutical Inc, Burnaby, BC, Canada);

mouse monoclonal anti-BRMS1 (1:200 dilution; provided by Dr

Danny R. Welch, University of Alabama at Birmingham); rabbit

polyclonal anti-ING4 (1:50 dilution; ProteinTech Group, Chicago,

IL); mouse monoclonal anti-MCL1 (1:100 dilution; Santa Cruz);

mouse monoclonal anti-NQO1 (1:100 dilution; Santa Cruz );

Table 1. Biological functions of 12 markers.

Marker Full name Function Localization

pAkt Protein Kinase B A serine/threonine kinase that leads to stimulation of cell
cycle progression, cell proliferation, and inhibition of apoptosis

Cytoplasm

Bim BCL2-like 11 A BH3-only protein belonging to the Bcl-2 family of
apoptotic regulators

Cytoplasm

BRG1 Brahma-related gene-1 A component of SWI ?SNF chromatin remodelling complex Nucleus
Cytoplasm

BRMS1 Breast cancer metastasis suppressor 1 A component of the mSin3a family of histone deacetylase
complexes

Nucleus

CTHRC1 Collagen triple helix repeat containing 1 A pro-migratory protein first found to be expressed
during rat tissue repair process

Cytoplasm

Cul1 Cullin 1 A rigid scaffold in SCF (Skp1/Cullin/Rbx1/F-box protein)
complex

Nucleus

ING4 Inhibitor of growth family, member 4 Tumor suppressor which interacts with p53, inhibits cell growth, and
induces apoptosis

Nucleus

MCL1 Myeloid cell leukemia sequence 1 (BCL2-related) Myeloid cell leukaemia-1, an anti-apoptotic protein Cytoplasm

NQO1 NAD(P)H dehydrogenase, quinone 1 A key enzyme involved in metabolism of quinones Cytoplasm

SKP2 S-phase kinase-associated protein 2 An F-box protein, targets cell cycle regulators via
ubiquitin-mediated degradation

Cytoplasm
Nucleus

SNF5 SWI/SNF related, matrix-associated, actin-
dependent A regulator of chromatin, subfamily
b, member 1

Tumor suppressor, the core subunit of SWI/SNF complex Nucleus
Cytoplasm

SOX4 Sex determining region Y-box 4 Embryonic development and differentiation Nucleus

doi:10.1371/journal.pone.0045037.t001

Table 2. Discrimination of melanoma from dysplastic nevi
using individual marker via univariate logistic regression
analysis.

Marker Optimal scale partitioning Chi-square P value

Akt 0 vs. 1–2 vs. 3 3.203 0.202

Bim 0 vs. 1–2 vs. 3 10.712 0.005

BRG1 0 vs. 1–2 vs. 3 9.595 0.008

BRMS1 0 vs. 1–2 vs. 3 0.893 0.640

CTHRC1 0 vs. 1–2 vs. 3 3.398 0.183

Cul1 0 vs. 1–2 vs. 3 30.991 1.96161027

ING4 0 vs. 1–2 vs. 3 21.218 2.46961025

MCL1 0 vs. 1–2 vs. 3 1.349 0.510

NQO1 0 vs. 1–2 vs. 3 5.714 0.057

SKP2 0 vs. 1–2 vs. 3 3.705 0.517

SNF5 0 vs. 1–2 vs. 3 0.788 0.674

SOX4 0 vs. 1–2 vs. 3 2.222 0.329

0, negative; 1, weak; 2, moderate; 3, strong.
doi:10.1371/journal.pone.0045037.t002

Table 3. Discrimination of melanoma from dysplastic nevi via
multiple logistic regressions.

Marker Chi-square P value

Bim 7.416 0.025

BRG1 10.723 0.005

Cul1 18.820 8.19061025

ING4 12.817 0.002
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mouse monoclonal anti-SNF5 (1:200 dilution; Abcam, Cam-

bridge, MA); mouse monoclonal anti-Cul1(1:100 dilution; Santa

Cruz); mouse monoclonal anti-SKP2 (1:100 dilution; clone A-2;

Santa Cruz); and rabbit polyclonal anti-SOX4 (1:25 dilution;

Abcam) at 4uC overnight. The TMA slides were then incubated

for 30 min each with a biotin-labeled secondary antibody and then

streptavidin-peroxidase (Dako Diagnostics). The samples were

developed using 3,3-diaminobenzidine substrate (Vector Labora-

tories, Burlington, Ontario, Canada) and counterstained with

hematoxylin. Dehydration was then performed following a

standard procedure and the slides were sealed with coverslips.

The technical negative control used for Immunohistochemistry

included the use of PBS instead of primary antibody, with all other

conditions kept the same.

Evaluation of Immunohistochemical Staining
The evaluation of staining was blindly and independently

examined by three observers, including one dermatopathologist.

Staining intensity was graded using the following scale: no staining

(0), weak (1), moderate (2), and strong (3). The percentage of

positive cells was also scored into 4 categories: 1 (0–25%), 2 (26–

50%), 3 (51–75%), and 4 (76–100%). The level of staining was

evaluated by immunoreactive score (IRS), which is calculated by

multiplying the scores of staining intensity and the percentage of

positive cells. Based on the IRS, staining pattern was defined as 0-

negative, 1-weak (IRS 1–4), 2-moderate (IRS 6–9) and 3-strong

(IRS 12). Consensus score was determined for any discrepant

scoring for each marker.

Calculating the Index Score for Multiple Biomarkers
To assess the value of the multiple biomarkers, the index score

was calculated for the 4 biomarkers, Bim, BRG1, Cul1 and ING4

using permutation and combination method for effective in data

fusion [30]; combined rank scores 0–7 of 2 markers, ING4-Cul1;

0–17 of 3 markers, ING4-Cul1-BRG1; 0–30 of 4 markers, ING4-

Cul1-BRG1-Bim.

Statistical Analysis
The likelihood of prediction for each marker’s score was

assessed with univariate logistic regression and multivariate logistic

regression was performed on significant markers (p,0.05) from

univariate logistic regression with optimal scale partitioning [31].

For the univariate logistic regression, negative staining was set as

the reference category, weak, moderate, strong and these

combinations were compared with negative category, and the

overall p value was used to determine the significance. The

specificity and sensitivity for individual marker and combination of

2-markers, 3-markers and 4-markers were analyzed using and

receiver operating characteristic (ROC) curves and by calculating

the area under the ROC curve (AUC). The ANN, following

training, could discriminate important patterns in input and

respond with an appropriate output, and when the ANN was

trained and tested after optimizing the input parameters, the

overall predictive accuracy can be obtained. In this study, the

ANN was performed by the Radial Basis Function Algorithm

(RBFA), consisting of 12 units in input layers of covariates plus the

number of factor levels, automatically calculating number of units

in hidden layer within 1 to 50 and 2 out-put layers (dysplastic nevi

and melanoma). The number of nodes was determined by trial

and error to produce the best performance. Classification tree was

constructed by the classification and regression tree (CART) model

to examine markers simultaneous optimizing the accuracy of

melanoma. The decision trees depicting the classification rules

generated through recursive partitioning. When growing each

tree, we assigned equal prior probabilities to the normal and

cancer cohorts, and equal misclassification costs. To assess the

amount of over-fitting, 10-fold cross-validation experiments was

performed using the SE rule as described by Breiman et al [32]. In

each of those 1,000 experiments, the data set was randomly split

into 10 smaller data sets and a pruning method was used to choose

the best number of nodes for the original tree pruned with respect

to 90% of the data according to the misclassification rate for the

other 10% of the data. All statistical tests were two-sided.

Significance levels were set at p,0.05. All statistical analyses were

carried out using the SPSS version 16.0 software (SPSS, Chicago,

IL, USA).

Results

Four of 12 Markers Expressed Differently in Melanoma
and Dysplastic Nevi

Due to loss of biopsy cores or insufficient tumor cells present in

the cores, 33 cases of dysplastic nevi, 122 melanomas could be

evaluated finally for staining of all 12 markers. Of 12 markers, 5

markers (pAkt, Bim, CTHRC, MCL1 and NQO1) had predom-

inantly cytoplasmic staining, 4 markers (BRMS1, Cul1, ING4 and

SOX4) had nuclear staining, and other 3 markers (BRG1, SKP2

and SNF5) contained both cytoplasmic and nuclear staining.

Representative images of immunochemistry staining were illus-

trated in Figure 1 and Table 1 summarized the results of the

staining for each marker.

Table 4. Diagnostic accuracy for melanoma via sensitivity
and specificity of each individual marker.

Marker Sensitivity, % Specificity, %

Bim 81.06 45.46

BRG1 97.14 26.67

Cul1 90.98 61.83

ING4 93.44 66.67

doi:10.1371/journal.pone.0045037.t004

Figure 2. ROC curve for 4-markers (ING4-Cul1-BRG1-Bim,
purple curve), 3-markers (ING4-Cul1- BRG1, green curve) and
2-marker (ING4-Cul1, blue curve).
doi:10.1371/journal.pone.0045037.g002
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Initially, each of the 12 markers was evaluated individually for

its ability to predict melanoma from dysplastic nevi using

univariate logistic regression analysis. The results demonstrated

that the expression of Bim, BRG1, Cul1 and ING4 differed

significantly between melanoma and dysplastic nevi, using the

optimal scale partitioning of negative, weak to moderate and

strong staining of these markers (Table 2). ING4 and Cul1 had the

most significantly statistical differences between dysplastic nevi and

melanoma.

The four markers (Bim, BRG1, Cul1 and ING4) were selected

for confirmation based on statistically significant differences in

univariate logistic regression analysis. Using the multiple logistic

regression analysis, there is statistically significant difference in

expression for 4 markers comparing melanoma with dysplastic

nevi. Cul1 had the most significant statistical difference between

dysplastic nevi and melanoma (Table 3). This provided directional

confirmation of the results of the previous univariate logistic

regression analysis.

Diagnostic Accuracy of Four Individual Markers for
Melanoma

In order to test the diagnostic accuracy of these 4 markers,

sensitivity, specificity and AUC were constructed for 4 individual

markers with three levels of negative, weak to moderate and strong

(Table 4), and the results revealed that ING4 and Cul1 had

sensitivity of 93.44% and 90.98%, and specificity of 66.67% and

61.83%, respectively. BRG1 had the lowest specificity (26.67%)

but it had highest sensitivity (97.14%).

Diagnostic Accuracy of Different Optimal Combination
The advantage of using a panel of markers was to improve

sensitivity and specificity. In formulating multiple-marker strate-

Figure 3. Architecture and performance of ANN. (a) ANN architecture. The network consisted of three layers: Input (boxes 1–12), hidden
(circles 1–6) and output (group 1: dysplastic nevi, group 2: melanoma) layer, respectively. (b) ANN predicted-by-observed performance chart. The box
plots represent the predicted-pseudo-probabilities for the output category; dysplastic nevi (blue) and melanoma (green) plotted against the known
clinical status for dysplastic nevi and melanoma. (c) The ROC curve for dysplastic nevi and melanoma separately.
doi:10.1371/journal.pone.0045037.g003
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gies, we chose 2-markers (ING4-Cul1), 3-markers (ING4-Cul1-

BRG1), and 4-markers (ING4-Cul1-BRG1-Bim) according to the

specificity values. AUC is a global measure for characterizing

utility, multiple-marker strategies resulted in improvement in the

area under the ROC curve. Multiple-marker distinguishing

capability can be significantly enhanced when compared to

single-marker capability. Results showed that the multiple markers

led to increased accuracy of melanoma diagnosis. A panel

consisted of 4 markers (ING4-Cul1-BRG1-Bim) achieved 94.3%

sensitivity and attained 81.8% specificity for discrimination of

melanoma from dysplastic nevi, and AUC is 84.3%, higher than

71.9% for 2-markers (ING4-Cul1) and 76.9% for 3-markers

(ING4-Cul1-BRG1) (Figure 2).

Artificial Neural Network
ROC curve results prompted us to generate a network classifier

to confirm 4-marker differentiation between dysplastic nevi and

melanoma. A separate output unit was created for dysplastic nevi

Figure 4. Classification tree of ING4, Cul1, BRG1 and Bim biomarkers for dysplastic nevi and melanoma. Nevi, dysplastic nevi; PM+MM,
primary and metastatic melanoma.
doi:10.1371/journal.pone.0045037.g004
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and melanoma shown in network architecture (Figure 3a). The

ANN correctly classified 83.2% of training and 81.2% of testing

(Figure 3b). The AUC for ANN on prediction were 86.2% for

dysplastic nevi and 86.0% for melanoma (Figure 3c). The overall

performance of the ANN was consistent with the results obtained

by ROC curve analysis.

Construction of Classification Model for Four Markers
We next determined the contribution of classification with the

CART model by measuring the sensitivity of the classification to a

change in the expression level of each marker. In this way, we

ranked the markers according to their significance for the

classification. We explored the utility of the multi-marker assay

in diagnosing melanoma with top-to-bottom differences. ING4

was the first determinant or the initial node for classification tree

(Figure 4). There was perfect separation of the 3 distributions of

top-to-bottom difference scores between dysplastic nevi and

melanomas, 8 of 155 melanomas lost ING4 expression, whereas

22 of 33 dysplastic nevi had strong expression. Application of this

classification scheme resulted in a sensitivity of 86.9% and a

specificity of 76.1%, and AUC of 82.9% in the diagnosis of

melanoma. The mean accuracy and error of the classification tree

estimated by performing 10-fold cross-validation was 79.2% and

0.03.

After univariate and multivariate logistic regression analyses,

four markers (BRG1, CTHRC1, Cul1 and ING4) with 91.2%

sensitivity and 85.9% specificity, and five markers (Bim, BRG1,

BRMS1, Cul1 and ING4) with 93.4% sensitivity and 86.1%

specificity were obtained for distinguishing primary and metastatic

melanoma from dysplastic nevi using ROC analysis, respectively.

The classification tree results of primary and metastatic melanoma

showed that ING4 and Cul1 were on the top of tree structure.

Furthermore, CTHRC1 may be a useful marker for primary

melanoma (Figure 5) and BRMS1 serves an important marker for

metastatic melanoma distinguishing from dysplastic nevi (Figure 6).

Discussion

Specific markers for discrimination of melanoma from dysplas-

tic nevi were scarce. The misdiagnosis of melanoma is the second

most common reason for cancer malpractice claims in the United

States [33]. To overcome these limitations, we utilized TMA to

evaluate diagnostic usefulness of biomarkers for distinguishing

melanoma from dysplastic nevi. Our data demonstrated that 4 of

12 markers were diagnostically useful, either singly or in

Figure 5. Classification tree of Cul1, ING4 and CTHRC1 biomarkers for dysplastic nevi and primary melanoma. Nevi, dysplastic nevi;
PM, primary melanoma.
doi:10.1371/journal.pone.0045037.g005
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combination for distinguishing melanoma from dysplastic nevi.

This method may represent a simple and easy way to implement

the translation of tissue microarray data into clinical practice. Four

markers described here could be used to assist in the histological

diagnosis of melanoma, thereby providing important information

to clinical pathologists.

We found that Bim, BRG1, Cul1 and ING4 were differently

expressed between melanoma and dysplastic nevi using the

univariate logistic regression (p , 0.01). Univariate analyses alone

may not be the best approach in choosing which markers to

combine in a predictive panel of markers. The differential

expressions of Bim, BRG1, Cul1 and ING4 between melanoma

and dysplastic nevi were confirmed by the multiple logistic

regressions (p , 0.05). These results imply that it is possible to

combine this 4-marker panel to distinguish melanoma from

dysplastic nevi. For the single biomarker accuracy, ING4 has high

sensitivity of 93.46% and specificity of 66.67%. We found that

applying the multiple-biomarker strategies improved specificity

and AUC. Combined 4-markers showed substantial improvement

specificity over single marker, from the highest 66.67% to 81.8%,

and AUC reached 84.3%. Our experience, as well as that of

others, has shown that a panel of markers is most helpful for

differentiating between melanoma and dysplastic nevi. Further-

more, the reliability of 4 markers to distinguish melanoma from

dysplastic nevi was confirmed by ANN. ANN analysis as a

statistical modeling tool has demonstrated the ability to assimilate

information from multiple sources and detect subtle and complex

patterns [34]. In our study, combination of 4 markers improved

AUC prediction of 86.2% for dysplastic nevi and 86.0% for

melanoma.

Utility of markers were measured by the classification tree, we

identified ING4, Cul1 and BRG1 were the most important

classification parameters in ranking top-performing biomarkers.

Classification tree was separated by the most powerful prediction

variable ING4, and the 10 fold of cross-validation error was 0.03,

suggesting that the tree was stable and reliable. CART is an

alternative to logistic regression and has several advantages as a

tool for developing clinical decision rules. A decision tree, on the

other hand, is easily understood by physicians. The most clinically

useful information gained by using the prediction CART tree is

that ING4 is priority marker, then Cul1 and BRG1 in clinical

application. We analyzed primary and metastatic melanomas

separately, the ING4 and Cul1 were the best in the classification

tree. Furthermore, the CTHRC1 marker may be a useful marker

for primary melanoma and BRMS1 serves an important marker

for metastatic melanoma distinguishing form dysplastic nevi. The

classification tree requires additional research to validate the

Figure 6. Classification tree for ING4, Cul1 and BRMS1 biomarkers for dysplastic nevi and metastatic melanoma. Nevi, dysplastic nevi;
MM, metastatic melanoma.
doi:10.1371/journal.pone.0045037.g006
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diagnostic value of Bim, BRG1, Cul1 and ING4 in an

independent data set.

Biological interpretation is required to understand why the

proposed markers are significantly different and as a utilization in

patients with melanoma and dysplastic nevi. Several of the

markers incorporated into our study have been previously

demonstrated to have a role in driving melanoma progression.

ING4, a tumor suppressor, mediates chromatin modification and

has a suppressive effect on tumorigenesis and innate immunity

[35,36]. It inhibits melanoma angiogenesis by suppressing NF-kB

pathway and is involved in melanomagenesis and induces growth

suppression and apoptosis in melanoma cell line [37,38]. Cul1, a

member of Cullin family, plays an important role in protein

degradation and protein ubiquitination, is increased in early stages

of human melanoma and promotes melanoma cell proliferation

through regulating p27. [27,39] BRG1, the catalytic subunit of the

SWI/SNF chromatin remodelling complex, is a novel binding

partner of the tumor suppressor p16INK4a, which is one of the

most important melanoma susceptibility genes identified to date

[40] and is involved in melanoma initiation [20]. Bim is a novel

member of the Bcl-2 family that promotes apoptosis [41]. Among

all the BH3-only protein members, Bim has been shown to have

the ability to interact with all Bcl-2 members, suggesting that it

may serve as a key factor in the event of apoptosis and thus

inhibition of Bim function may be involved in tumorigenesis.

In summary, we describe a multi-marker immunohistochemical

panel of Bim, BRG1, Cul1 and ING4 which may aid in

differential diagnosis for melanoma from dysplastic nevi.
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