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Abstract

Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of
samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered
the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very
large number (.10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset,
such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-
analysis. This strategy is implemented in a web-based platform named ‘‘Gene Expression Commons’’ (https://gexc.stanford.
edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell
populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open
platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their
own microarray data, and design their own working models representing biological relationship among samples.

Citation: Seita J, Sahoo D, Rossi DJ, Bhattacharya D, Serwold T, et al. (2012) Gene Expression Commons: An Open Platform for Absolute Gene Expression
Profiling. PLoS ONE 7(7): e40321. doi:10.1371/journal.pone.0040321
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Introduction

Gene expression microarray technology has allowed a global

measurements of gene expression status in diverse cells and

tissues across species [1]. Technological advances enable

integration of thousands of probesets on a single chip, providing

mRNA levels to be measured for almost all known protein-

coding gene in the genome. However, since each probeset

intrinsically has a different efficiency of hybridization due to

differences in target sequences, current methodologies of array-

based global gene expression analysis are limited to profiling

relative differences in gene expression among samples rather than

absolute gene expression analyses of a particular sample [1]

(Figure 1A left). The output of differentially regulated genes is

unique to the combination of samples compared, and the

relative differences are frequently misinterpreted because there is

no assurance that every probeset has the same dynamic range

of gene expression values. For instance, the biological interpre-

tation of 2-fold changes (1 log2 shift) for a probeset that has

small dynamic range compared to a probeset that has large

dynamic range will be different. Moreover, genes whose

expression level does not vary significantly between samples

within a given study are frequently ignored regardless of their

expression intensity. These limitations have created a bottleneck

for generalizing results of gene expression microarray assays

across experiments and across laboratories.

To overcome these limitations, we hypothesized that a very

large number of publicly available microarray data from a

particular microarray platform could be used as a common

reference that might be enable empirical estimation of the absolute

expression level of a given gene. If the common reference is large

enough, meta-analysis could be applied to the common reference

to compute the distribution of data, dynamic-range, and a

threshold to distinguish high expression from low expression for

each probeset. Using such an approach, we now demonstrate that

absolute gene expression profiling can be achieved by mapping

sample data against a common reference obtained by meta-

analysis (Figure 1A right).
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Results

Common Reference and Probeset Meta-Profile Database
In our initial experiment, we determined the size of the

common reference required to perform meta-analysis with

sufficient statistical power. We focused on Affymetrix microarrays

because of the abundance of publicly available data. We

downloaded 11,939 Affymetrix Mouse Genome 430 2.0 and

25,299 Affymetrix Human Genome U133 Plus 2.0 gene expres-

sion microarray data from the NCBI Gene Expression Omnibus

(GEO) public repository [2]. From the pool of microarray data

downloaded, we randomly selected 10, 20, 40, 80, 160, 320, 640,

1280, 2560, and 5120 data as a hypothetical common reference.

Each common reference sample was normalized using the RMA

algorithm [3], and for each probeset, the dynamic range was

calculated as the difference between the lowest and the highest

expression values among the data. Next, one additional micro-

array data was randomly chosen from the pool as the ‘‘actual

sample’’ and was normalized with each hypothetical common

reference. To test if adding the ‘‘actual sample’’ changed the

computed dynamic ranges of probesets significantly, we analyzed

the number of probesets for which the expression intensity of the

‘‘actual sample’’ falls outside the dynamic range calculated from

the hypothetical common reference. This number decreased

exponentially as the size of hypothetical common reference

increased (Figure 1B). As shown in Figure 1B, the dynamic range

becomes stable as the size of the hypothetical common reference

approaches 2560, and the probabilities of false estimation of the

probeset dynamic range are less than 0.1% for mouse, and 0.5%

for human, respectively. We repeated this experiment five times

and observed consistent trends (Table 1 and 2). This result

indicates that if large numbers of microarray data are pooled and

Figure 1. Absolute gene expression profiling with a large-scale common reference and a probeset meta profile database. (A) Relative
vs. absolute gene expression profiling. Conventional methods compare differences in gene expression between samples within an individual
experiment, and result in relative values only (left). In Gene Expression Commons, raw microarray data is individually normalized against a large-scale
common reference, then mapped onto the probeset meta profile. This strategy enables profiling of absolute expression levels of all genes on the
microarray (right). (B) Relationship between the size of the common reference and the accuracy of the probeset dynamic range estimation. The result
of one out of five experiments is shown. The Y-axis represents % probesets with false estimation of dynamic range in mean 6 S.E.M (n = 10). (C) The
dynamic range versus the mean of each probeset in Affymetrix Mouse 430 2.0 (n = 11,939) (left) and Affymetrix Human U133 Plus 2 (n = 25,229) (right)
presented by a density plot and histograms. (D) Graphical representation of probeset meta profile. The Y-axis represents expression intensity without
units in log2 scale. The distribution of expression levels is displayed by a histogram (right side of the axis). The high/low threshold computed is shown
by a solid bar, and the distribution of percentiles in either the high or low expression range is indicated by a gradation of color, displayed as highest
(+100%) in dark red, threshold (0%) in white, lowest (2100%) in dark blue (left side of the axis). Four diverse distributions of probesets for four
different genes (Aak1, Rbx1, Hif1a and Ikzf1) (left), and diverse distribution of four probesets of one gene (Il16) (right) are shown.
doi:10.1371/journal.pone.0040321.g001

Table 1. Size of universal reference and probeset dynamic-range estimation Affymetrix Mouse 430 2.0 (45101 probesets).

False positive on probeset dynamic-range estimation (mean±s.e.m.) [%]

Size of common reference (number of microarrray data)

Exp 10 20 40 80 160 320 640 1280 2560 5120

#1 (n = 10) 16.3861.72 12.9961.69 4.2860.98 1.8860.48 1.1960.48 0.6360.27 0.2560.11 0.1160.04 0.0760.03 0.0460.02

#2 (n = 10) 15.1061.83 10.6762.30 3.9560.91 2.2660.72 1.0060.35 0.5960.25 0.2760.09 0.1460.07 0.0660.02 0.0360.01

#3 (n = 10) 17.6862.16 7.5061.16 4.5161.02 2.5260.55 1.1860.44 0.5460.19 0.2160.06 0.1260.05 0.0560.02 0.0460.02

#4 (n = 10) 18.3762.85 10.8861.49 5.2561.11 2.5960.85 1.0560.30 0.4860.15 0.3260.15 0.1360.06 0.0760.03 0.0360.01

#5 (n = 10) 19.1562.26 7.8661.09 4.6361.10 2.1960.54 1.2760.56 0.5360.17 0.2560.09 0.1360.06 0.0560.02 0.0360.01

Ave 17.3460.72 9.9861.02 4.5260.22 2.2960.13 1.1460.05 0.5560.03 0.2660.02 0.1360.00 0.0660.00 0.0360.00

doi:10.1371/journal.pone.0040321.t001

Table 2. Size of universal reference and probeset dynamic-range estimation Affymetrix Human U133 Plus 2 (54677 probesets).

False positive on probeset dynamic-range estimation (mean±s.e.m.) [%]

Size of common reference (number of microarrray data)

Exp 10 20 40 80 160 320 640 1280 2560 5120

#1 (n = 10) 20.0163.58 12.0163.23 8.7863.42 4.3262.18 3.1461.97 1.6961.18 1.0360.78 0.7160.57 0.3460.28 0.2360.20

#2 (n = 10) 24.1863.89 13.8563.85 8.2863.20 4.7362.35 2.6361.52 1.4460.98 0.9960.71 0.7260.61 0.4660.40 0.3060.28

#3 (n = 10) 22.2864.00 10.0062.49 6.9162.44 3.5661.86 2.6761.49 1.5661.10 0.9860.73 0.6060.47 0.4260.36 0.3260.29

#4 (n = 10) 20.8963.77 12.3263.04 8.7063.24 5.3162.66 2.9861.90 1.9261.36 1.2360.96 0.6660.53 0.5360.47 0.2060.18

#5 (n = 10) 19.1163.77 12.9663.68 5.7862.22 5.7562.98 3.2461.98 1.7361.20 1.1360.87 0.5360.43 0.5860.52 0.2760.24

Ave 21.3060.89 12.2360.64 7.6960.58 4.7360.38 2.9360.12 1.6760.08 1.0760.05 0.6560.04 0.4660.04 0.2760.02

doi:10.1371/journal.pone.0040321.t002
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normalized together, we can estimate the dynamic range of each

probeset with a high degree of confidence, and can use those

pooled data as a ‘‘Common Reference’’. To maximize confidence,

we used all 11,939 Affymetrix mouse 430 2.0 microarray data and

25,229 Affymetrix human U133 Plus 2.0 microarray data for the

first version of the common reference.

Since the common reference contains a large number of data

points for each probeset, various attributes besides the dynamic-

range can be calculated with statistical reliability. Figure 1C

displays the scatter plot of the dynamic range versus the mean of

each probeset obtained from Affymetrix mouse 430 2.0 micro-

arrays (n = 11,939) and Affymetrix human U133 Plus 2.0

microarrays (n = 25,229). The dynamic range varies widely from

1 to 10 in log2 scale in both platforms. This variation clearly

indicates the limitations of conventional selection criteria based on

just the relative fold-change between samples within a single

experiment. The biological context of a 2-fold increase in a

probeset that has a small dynamic range is likely to be more

significant than a 2-fold increase in a probeset in which the highest

level of expression is much more than a 2-fold change. Conversely,

one cannot expect to find a 10-fold change in expression of a gene

with a small dynamic range.

Another important finding is that there is wide variation in the

mean values of probesets with the same dynamic range. Two

different possibilities may explain this phenomenon. First, non-

specific hybridization signals are significantly different for different

probesets. Second, there are a large number of ‘‘housekeeping’’

genes that are highly expressed irrespective of cell type. On the

microarray, both of these two types of probesets are likely present,

but our approach does not distinguish between them.

Because of the large sample size in our common reference, the

distribution of gene expression values for each probeset is

extremely stable. Therefore, the inclusion of additional data in

the future will likely not affect this distribution, as shown in

Figure 1B. Further, we can infer that for each probeset large

numbers of representative low and high gene expression values are

available. Thus, a threshold value which distinguishes high

expression from low expression can be estimated (high/low

threshold). To achieve this, we used the StepMiner algorithm

originally developed to fit step functions [4]. For each probeset, the

expression intensities were sorted from low to high, and a step

function fitted to the sorted expression intensities that minimizes

the square error between the original and the fitted values. This

enabled us to identify a threshold for high versus low expression.

Each individual expression value from the common reference for a

given probeset was assigned a percentile rank. For each probeset,

the meta database provides the high/low threshold, minimum,

maximum.

A graphical presentation of the meta profiles for eight

representative probesets appears in Figure 1D. The Y-axis

represents expression intensity. On the right side of the axis, the

distribution of expression intensities of the data used to generate

the common reference is displayed in a histogram. On the left side

of the axis, the high/low threshold is shown by a solid bar, and the

distribution of percentiles in either the high or low expression

range is displayed by a gradation of color. The probeset for Aak1

(1452632_at) and the probeset for Rbx1 (1416577_a_at) have

almost equivalent dynamic ranges, but their distributions of

expression intensities are strikingly different. The probeset for

Hif1a (1416035_at) has a uni-modal distribution, whereas the

probeset for Ikzf1 (1436312_at) has a bimodal distribution. The

Affymetrix Mouse 430 2.0 microarray contains 4 probesets for

Il16, and each probeset has a distinct dynamic-range and shape of

distribution (Figure 1D, right).

Gene Expression Commons
We developed a computer program to normalize microarray

data of interest against the common reference. As a result of this

processing, the expression intensities and expression percentiles

are obtained for all probesets, and the stability of the results is

greater than 99.9%. Thus, absolute gene expression profiling can be

achieved. We integrated these strategies into an intuitive web inter-

face named ‘‘Gene Expression Commons’’ (https://gexc.stanford.edu).

Figure 2A shows each functional layer of Gene Expression

Commons. Users can search for absolute gene expression with

probeset meta profile information using a web interface.

‘‘Model’’ is a searchable category that represents biological

context and relationships among ‘‘Populations’’ displayed in 2-

dimensions (e.g. Mouse Hematopoiesis Model, described later).

‘‘Population’’ is the most essential unit of data in Gene Expression

Commons, which contains several microarray data that are

biological replicates. Microarray data are normalized individually

with the common reference. Then, the normalized values are

averaged. These averaged values are then mapped onto the

probeset meta-profile in order to obtain the population’s percentile

of expression for each probeset.

The system is designed to enable updating of the common

reference to improve the breadth of available samples. When the

size of publically-available data of Affymetrix mouse 430 2.0

microarray or Affymetrix human U133 Plus 2.0 microarray has

increased significantly, e.g. doubled from current size, we will

introduce a new version of the common reference. Also, other

microarray platforms will be added to the system when the

numbers of publicly available data reaches a point at which

generation of a stable common reference is possible.

Mouse and Human Hematopoiesis Models
Hematopoietic stem cells generate more than 10 distinct

functional cell types every second through multiple intermediate

progenitor stages. Hematopoietic stem cells and many of their

downstream progeny can be readily isolated and molecularly

characterized. To establish a gene expression map of hematopoi-

esis, we highly purified 39 defined hematopoietic populations for

which we have established putative differentiation pathways

(Table 3) from bone marrow, spleen, and thymus utilizing 12-

color digital FACS, and generated gene expression data for each

on the Affymetrix Mouse Genome 430 2.0 microarray platform

(GSE34723) [5,6]. The data of each population were incorporated

into Gene Expression Commons, and a ‘‘Mouse Hematopoiesis’’

Figure 2. Structure and Workflow of Gene Expression Commons. (A) Functional layers of Gene Expression Commons system. Users can select
a Model of interest, and search for absolute gene expression through an intuitive web interface. A Model is a searchable category representing a
biological context and displaying relationships among Populations. A Population contains several microarray data, which are biological replicates.
Users can submit their own Populations, and design Models with a privacy control feature. (B) Seamless search flow at Gene Expression Commons.
Gene Name Search provides absolute gene expression of a particular gene (path a). Expression Pattern Search provides a list of genes with expression
patterns matching the expression pattern of interest designed by user (path b). From the list of genes, absolute expression of a particular gene is
displayed with one click. From the absolute gene expression of a particular gene, the user can obtain a list of genes with the same expression pattern
(path d).
doi:10.1371/journal.pone.0040321.g002
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model was generated (Figure 2B). On the Mouse Hematopoiesis

model, users can search and observe the absolute gene expression

profile of any gene on Affymetrix Mouse Genome 430 2.0

microarray platform simply by searching for the NCBI gene

symbol, gene name, keyword, or probeset ID. For instance, the

gene expression profile of CD19 is shown in Figure 2B (path a).

On the results page, the right column displays the probeset meta

profile including its dynamic range, threshold level, histogram of

data distribution, and calculated low/high expression level

represented by a color-coded heatmap. The left column depicts

the expression level of the gene searched in a heatmap. Red

represents high expression, white represents threshold level

expression, and blue represents low expression. Because of the

size of the common reference data, the expression levels for each

population are stable. Thus, adding another populations to the

‘‘Mouse Hematopoiesis’’ model in the future will not alter the

expression levels of existing populations. This feature is very

important, as discovery of new cell populations will undoubtedly

occur.

If a microarray platform has multiple probesets for a particular

gene, the Gene Expression Commons sorts the results based on the

dynamic range of each probeset. To eliminate potential outliers,

the highest 0.5% and lowest 0.5% of data points are ignored in this

dynamic-range calculation. Probesets are sorted from greatest to

least dynamic range, since the probeset with the largest dynamic

range is likely to be the most informative. However, a probeset

that has wide and single-modal distribution could be probeset with

greater noise.

For each probeset, the Gene Expression Commons displays not

only the dynamic range, but also the threshold value, which

distinguishes high from low expression. This enables searches

based upon particular expression patterns. For instance, genes

expressed only in the B-cell development pathway can be searched

by a few clicks (Figure 2B, path b). A list of genes with an

expression pattern matching the inquiry is displayed, and the user

can then investigate the detailed gene expression profile with one

more click (Figure 2B, path c).

Using this powerful feature, Expression Pattern Search, we can

profile the kinetics of gene expression within the model. For

instance, genes expressed at a high level in all of the populations in

the Mouse Hematopoiesis model can be searched by one click. In

the Mouse Hematopoiesis model, 1722 probesets are always high,

and 11,569 probesets are consistently low. Other genes dynam-

ically change expression among the populations (Figure 3A, left).

This type of profiling cannot be achieved by conventional relative

comparisons of small numbers of samples.

Furthermore, genes highly expressed in a specific population

can be identified (Figure 3A, right). Interestingly, very few genes

specific for a particular hematopoietic population (either high or

low) are detected in the Mouse Hematopoiesis model. This result

suggests that gene expression programs change gradually through-

out hematopoietic differentiation. Lists of genes and further details

can be obtained at Gene Expression Commons (https://gexc.

stanford.edu/).

Gene expression microarray data of publicly available human

hematopoietic populations [7,8] are also available in the Gene

Expression Commons. This Human Hematopoiesis model con-

tains HSC, MPP, and RA-positive progenitor population from

cord blood; HSC, MPP, RA-positive progenitor population, CMP,

MEP, and GMP from healthy adult bone marrow; and LSC, LPC,

and Blast populations from AML patients.
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Figure 3. Gene expression pattern profiling of mouse and human hematopoiesis. Number of genes expressed at very low levels (dark
blue), low levels (light blue), high levels (light red) and very high levels (dark red) in either the Mouse Hematopoiesis Model (A, left) or Human
Hematooiesis Model (B, left). Number of genes expressed at high (red) and low (blue) levels in a specific population in Mouse Hematopoiesis Model

Absolute Gene Expression Profiling Platform
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Gene Expression Commons as an Open Platform
Gene Expression Commons is not only a search engine for

existing gene expression data, but also a universal open platform to

profile absolute gene expression of any microarray data. Users can

submit gene expression microarray data files of their own, or

published microarray data downloaded from public repositories

e.g. GEO. Users can also design their own models by combining

‘‘Populations’’ to represent biological context of interest. Users can

control the privacy level of submitted data and models, and share

private models using group function provided by web platform.

Through this workflow, users can find key genes and expression

patterns by absolute gene expression profiling to identify

candidates relevant to their biological question of interest. Once

a project is published, the population and model used will be

publicly available at the Gene Expression Commons.

Discussion

We described a strategy for absolute gene expression profiling

based on meta-analysis of large-scale microarray data, and

introduced the Gene Expression Commons system as a compre-

hensive discovery platform. The common reference and probeset

meta database provide significant advantages over conventional

relative gene profiling. For each microarray, gene expression can

be measured relative to the common reference that provides

absolute gene expression values for comparison between many

microarray experiments.

The concept of using a common reference to normalize large

amounts of Affymetrix data was first proposed and developed by

Katz et al. [9] in 2006. Katz et al. used 1,614 diverse biological

samples comprised of 251 tissue and pathological categories as the

common reference. In 2007, Day et al., described the Celsius

system in which by a selected ‘quantification pool’ of 50

heterogeneous mixture of samples is held constant for all

quantification events [10]. However, as we shown by computa-

tional simulation in Figure 1b, this size of data pool is not large

enough to establish stable common reference. In our system we

used almost all of the publicly available gene expression data

(.10,000 arrays) to enhance the stability of the common

reference. However, the drawback of this large-scale common

reference strategy is the computational cost of the normalization

process. Each time a new microarray is submitted, the data is re-

normalized against all of the microarrays in large-scale common

reference, which takes several hours on a dedicated server.

Recently, McCall et al. expanded the work of Katz et al. and

develop a new strategy called frozen RMA (fRMA) [11]. fRMA

first computes probe-specific parameters required for normaliza-

tion from large-scale publicly available microarray data, then

normalizes each additional microarray using those pre-computed

values. Therefore, the fRMA method has a significant potential to

improve the processing speed of normalization in Gene Expression

Commons.

Oncomine is a database of cancer microarrays and provides a

platform for differential expression analyses comparing most major

types of cancer with respective normal tissues as well as a variety of

cancer subtypes [12]. In databases like Oncomine, Flymine [13],

Ingenuity, EMAAS [14], MiMiR [15] and many others around

the world, microarray data can be imported, queried and

visualized for a selected gene across all analyses or for multiple

genes in a selected analysis. However, none of these databases

provide an analysis platform for absolute gene expression profiling.

In 2007, Zilliox et at introduced a method to compute thresholds

that distinguish expressed from unexpressed genes, as part of a

system to define tissue-specific ‘gene expression bar codes’, using

1092 manually curated human samples and 236 mouse samples

[16]. They added a web interface in 2011 to obtain a bar code for

a particular sample uploaded by user (http://rafalab.jhsph.edu/

barcode/index.php) [17]. In this method, the authors used the

smallest mode, defined as local maximum of the estimated density

distribution, and standard deviation estimated from expression

(A, right) and Human Hematopoiesis Model (B, right). A list of genes matching each criterion can be obtained with a few clicks on Gene Expression
Commons (https://gexc.stanford.edu/).
doi:10.1371/journal.pone.0040321.g003

Table 4. Microarray gene expression profilings tageting HSC based on relative comparison.

Year Group Platform HSC Compared to # of probes # of genes Ref

2002 Hood House made Rhlow KLS Rhhigh KLS 5000 [21]

2002 Lemischka Affymetrix MU-U74-2 A,C Rhlow KLS Variou type of cells 36000 6000+18000 EST [22]

2003 Akashi Affymetrix MU-U74-2 A,C Thy1.1low Rhlow KLS MPP, CMP, CLP 36000 6000+18000 EST [23]

2003 Weissman Clontech Atlas Mouse cDNA
array

Thy1.1low KLS CMP, CLP, GMP, MEP, ProT,
ProB

1200 [24]

2005 Weissman Stanford Microarray Facility
42 k
mouse cDNA array

Thy1.1low Flk22 KLS Thy1.1low Flk2+ KLS,
Thy1.12

Flk2+ KLS

42000 [25]

2005 Weissman Affymetrix Mouse 430 2.0 CD342 Flk22 KLS
(young)

CD342 Flk22 KLS (old) 45000 34000 [26]

2006 Goodell Affymetrix Mouse U74A SP Sca1+ Gr12 CD8+ T cell 45000 34000 [27]

2007 Goodell Affymetrix Mouse 430 2.0 SP KLS Erythrocyte, Granulocyte,
Native T cell, Activated T
cell,
Activated B cell, Monocyte,
NK cell

45000 34000 [28]

KLS: c-Kit+ Lin2 Sca-1+; MPP: multipotent progenitor; CMP: common myeloid progenitor; CLP: common lymphoid progenitor; GMP: granulocyte/macrophage
progenitor; MEP: megakaryocyte/erythrocyte progenitor; Pro T: progenitor T cell, Pro B: progenitor B cell.
doi:10.1371/journal.pone.0040321.t004
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estimates to the left side of the smallest mode. By contrast, Gene

Expression Commons uses random samples from a large pool of

microarray data as common reference, and sets a threshold to

divide the expression of each gene into ‘‘low’’ and ‘‘high’’ values

(instead of ‘‘present’’ and ‘‘absent’’). This threshold is computed by

sorting the expression values from low to high, then using the

StepMiner algorithm to fit a step function to the data. Low and

high values may be more appropriate for finding signature genes

that differentiate cell types, since genes are often expressed at a low

level in many cell types, but at dramatically higher levels in a small

number of cell types of interest. We would encourage investigators

to experiment with web interfaces for both systems to find out

which method is most appropriate for their purposes.

Since hematopoiesis has been one of the most studied tissue

stem cell based systems, numerous efforts have been invested in

microarray analysis of hematopoietic cells, especially hematopoi-

etic stem cells (Table 4). However, each study used a different

protocol for the purification of HSCs, and used different cell

populations as the counterpart to obtain ‘differentially regulated

genes’. Thus each result is project-specific and is difficult to

generalize.

Recently, more comprehensive approaches to profile gene

expression of hematopoietic systems have been introduced.

BloodExpress collected published microarray data of 37 distinct

mouse hematopoietic populations ex vivo or after culture, as

conducted by 15 different projects/laboratories [18]. Blood-

Express processed each microarray data by the MAS5 method

which does not consider differences in the dynamic ranges of

probesets, and each gene was classified into binary Present or

Absent states. In terms of data processing strategy, BloodExpress’

binarization by MAS5 was a practical first-pass categorization of

gene expression. On the other hand, the data integrated into

BloodExpress were highly heterogeneous, and the classification of

all genes into ‘‘present’’ or ‘‘absent’’ categories is overly simplistic.

In 2008, Heng and Painter proposed an aspiring project named

‘Immgen Project’ to establish a complete ‘road map’ of gene-

expression and regulatory networks in all immune cells [19]. This

project is aiming to generate microarray data of over 200 immune

cell types by a highly standardized protocol. However, they do not

provide absolute gene expression because their arrays are not

compared with arrays from other tissues.

To overcome those limitations, we sorted and profiled 39 mouse

hematopoietic populations using very strict cell surface criteria,

and the most modern sorting strategies. All these data have been

loaded onto the Gene Expression Commons and will be made

available to the public. Moreover, because of the advantage of the

common reference strategy, incorporating additional data of new

populations in future will not detectably change the gene

expression readout of existing populations. Thus, it is our belief

that the Gene Expression Commons will serve as a common

platform for absolute profiling of gene expression in the

hematopoietic system.

The Gene Expression Commons has many other potential uses.

For example, one can enter the name of a gene, and rapidly

determine the quantitative expression of that gene in each cell

type. Alternatively, one can query any cell type within a model to

obtain a list of genes expressed exclusively in that cell type, or

concomitantly with a defined subset of other cell types. This could

be done in mice, where mutant and lineage tracing strains exist to

identify candidate genes that may be important in cellular

differentiation. Another possible use is for pharmacology, where

the expression of drug targets and potential toxicities to

hematopoietic stem and progenitor cells can be predicted.

Here we demonstrate that absolute gene expression profiling

can be achieved by establishing large-common reference data and

meta-analysis. This strategy advances gene expression analysis

beyond conventional profiling with small numbers of samples.

Additionally, this strategy can be applicable to other platforms for

Table 5. Clone and Conjugation of Antibodies Used.

Epitope Clone Fluorescence Vendor

AA4.1 (CD93) AA4.1 APC eBioscience

B220 RA3-6B2 PE-Cy7,
APC-Cy7

eBioscience

B220 RA3-6B2 PacBlue Weissman lab

CD11b M1/70 PE-Cy5,
PE-Cy7

eBioscience

CD11c N418 PE-Cy5.5,
APC-Cy7

eBioscience

CD122 TM-b1 PE eBioscinece

CD19 1D3 PE-Cy5.5 eBioscience

CD21 8D9 PE eBioscience

CD23 B3B4 PECy7 eBioscience

CD25 PC61.5 Pacific orange Weissman lab

CD27 LG.7F9 APC eBioscience

CD3 17A2 Pacific Blue Weissman lab

CD3 17A2 Cy7PE eBioscience

CD3 2C11 Pacific blue Weissman lab

CD34 RAM34 FITC eBioscience

CD4 GK1.5 Alexafluor647,
PB

Weissman lab

CD4 GK1.5 PE-Cy7 eBioscience

CD44 IM7 Alexafluor 680 Weissman lab

CD49b DX5 FITC eBioscience

CD69 H1.2F3 biotin eBioscience

CD8a 53.6.7 Alexafluor488 Weissman lab

CD8a 53.6.7 PE-Cy7 eBiosience

c-Kit 2B8 Alexafluor750 eBioscience

FcgrII/III 2.4g2 PacificOrange Weissman lab

Flk2 A2F10 PE eBioscience

Gamma-delta TCR GL3 PE eBioscience

Gr-1 RB6-8C5 PE-Cy7 eBioscience

IgD 11–26 eFluor 450 eBioscience

IgM II/41 PECy5 eBioscience

IL7Ra A7R34 Biotin, PE-Cy5 eBioscience

Ly6d 49H4.3 FITC, A680,
PacificOragne

Weissman lab

Mac-1 M1/70 Cy5PE eBioscience

NK1.1 PK136 PE-Cy5,
PE-Cy7

eBioscience

Sca-1 E13-161-7 PacificBlue Weissman lab

Slamf1 TC15-12F12.2 PE BioLegend

Thy1.1 OX-7 biotin Weissman lab

Tie-2 TEK4 biotin eBioscience

Ter119 TER 119 PE-Cy7 eBioscience

Vcam-1 429 Alexafluor647 BioLegend

doi:10.1371/journal.pone.0040321.t005
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high-throughput assays including exon arrays, microRNA arrays,

or DNA methylation arrays. The strategy is implemented into a

web-based open platform termed ‘‘Gene Expression Commons’’

(https://gexc.stanford.edu/).

Materials and Methods

Data Collection and Preprocessing
Raw data files for 11,939 Affymetrix 430 2.0 mouse arrays and

25,229 Affymetrix U133 Plus 2.0 human microarrays were

obtained from NIH Gene Expression Omnibus [2]. The data

were normalized and probeset expression levels were generated by

using the standard robust multichip average algorithm [3].

Next, a threshold was assigned to each probeset using the

StepMiner algorithm [4], which was originally designed to fit step

functions to time-course data. For this application, the expression

values for each probeset were ordered from low-to-high, and

StepMiner was used to fit a rising step function to the data that

minimizes the difference between the fitted and measured values.

This approach places the step at the largest jump from low values

to high values (but only if there are sufficiently many expression

values on each side of the jump to provide evidence that the jump

is not due to noise), and sets the threshold at the point where the

step crosses that original data. In the case where the gene

expression levels are evenly distributed from low to high, the

threshold tends to be near the mean expression level.

Animals
All animal procedures were approved by the International

Animal Care and Use Committee and the Stanford Administrative

Panel on Laboratory Animal Care.

Cell Sorting and Antibodies
All cells were sorted and data collected on a BD FACSAria

(Beckton Dickinson, San Jose, CA). FlowJo Software (TreeStar,

OR) was used for flow cytometric data analysis. A complete list of

all antibodies used in the study is shown in Table 5.

Gene Expression Microarray Analysis
Genome-wide gene expression analysis was performed using

Affymetrix GeneChip Mouse Genome 430 2.0 Array (Affymetrix).

For each sample, 1 ug of high-quality total RNA was amplified,

labeled and hybridized onto the microarray at Stanford PAN

facility microarray core according to Affymetrix’s specifications.

Microarray data reported in this manuscript is described in

accordance with MIAME guidelines. The data has been deposited

in GEO public repository (GSE34723).
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