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Abstract

Much has been written regarding p-values below certain thresholds (most notably 0.05) denoting statistical significance and
the tendency of such p-values to be more readily publishable in peer-reviewed journals. Intuition suggests that there may
be a tendency to manipulate statistical analyses to push a ‘‘near significant p-value’’ to a level that is considered significant.
This article presents a method for detecting the presence of such manipulation (herein called ‘‘fiddling’’) in a distribution of
p-values from independent studies. Simulations are used to illustrate the properties of the method. The results suggest that
the method has low type I error and that power approaches acceptable levels as the number of p-values being studied
approaches 1000.
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Introduction

If one in twenty does not seem high enough odds, we may, if we prefer it,

draw the line at one in fifty (the 2 per cent. point), or one in a hundred

(the 1 per cent. point). Personally, the writer prefers to set a low

standard of significance at the 5 per cent point, and ignore entirely all

results which fail to reach this level. A scientific fact should be regarded

as experimentally established only if a properly designed experiment

rarely fails to give this level of significance.

– Sir Ronald Aylmer Fisher (1926), The Journal of the Ministry

of Agriculture.

The interpretation of ‘‘statistical significance’’ as a p-value equal

to or less than 0.05 has been attributed to the above well-known

quotation from R.A. Fisher and other statements by him. In 1982,

however, Cowles and Davis [1] presented a thorough treatment of

the origins of the 0.05 level of statistical significance and suggested

that this threshold may in fact have predated Fisher. Regardless of

its origin, one cannot help but notice, from journal articles and in

working with scientists from other fields, that the 0.05 threshold for

significance holds to this day. Results with p-values below 0.05 are

hailed as ‘‘significant findings.’’

The tendency for researchers to favor submission of significant

findings for publication over insignificant ones, and the tendency

for journals to favor publishing these as well, is behind the well-

known issue of publication bias in meta-analysis (see Rothstein et

al. [2] for an extensive discussion). Emerson et al. [3] conducted a

study showing that peer-reviewed manuscripts reporting statisti-

cally significant findings were rated as methodologically stronger

than were those with findings that were not significant, even when

the methods used in both papers were identical.

In 2007 Ridley et al. [4] investigated journal reporting bias, that

is, the tendency for smaller p-values rather than larger ones to be

reported in journals. Several citations therein referred to selective

reporting bias and the tendency for statistically significant findings

to have a higher chance of publication and to be published more

quickly (e.g., see Stern and Simes [5]). In Ridley et al. [4], four

subintervals within the usual statistical significance range of 0–0.05

were considered: [0.01, 0.05), [.001, 0.01), [0.0001, 0.001), and

below 0.0001. The values separating the intervals are common

significance thresholds for which p-values are often rounded and

reported as simply being below the threshold, rather than being

numerically reported [4]. The rationale to the Ridley et al. [4]

study was that, in the presence of selective publication, a

disproportionately larger number of p-values would be reported

just below the interval threshold rather than above. Over 3000

reported p-values were collected for their study–over 1000 from

each of three prominent science journals (2003 and 2004 editions):

Proceedings of the Royal Society of London, Series B; Nature; and Science. A

key challenge in their technique was to model a null situation in

which no reporting bias was present. To address this, they divided

each subinterval into two halves and, assuming that the

distribution of p-values should be smooth, used three different

statistical models to compute an expected proportion of p-values in
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each half of each subinterval if no selective reporting had

occurred. By comparing the observed proportion to the expected

proportion in these subintervals, they conducted a test of whether

selective reporting had occurred. Their findings suggested,

regardless of which of the three methods was used to report the

expected proportions of p-values and across all three journals, that

an unexpectedly high proportion of p-values was reported just

below the threshold for each interval. These findings, they

concluded [4], were more likely due to biased reporting than to

any artifact resulting from their proposed method of analysis.

Herein we consider an issue somewhat analogous to the one

considered by Ridley et al. [4] but distinctly different in its focus.

We consider the situation in which an investigator obtains a p-

value of just above 0.05, say, 0.06. Intuition would suggest that a

tendency may exist to conduct one or more alternative analyses

involving transformations, removal of outliers, additional terms in

a model, etc., in order to ‘‘tweak’’ this p-value to a level (e.g.,

#0.05) that may facilitate getting the work published. Such

additional testing contingent on initially observing a p-value just

above 0.05 we call ‘‘fiddling.’’ If such fiddling does occur, how

would it manifest itself in the literature and how can it be

statistically detected? We consider these questions here and

investigate the feasibility of different methods for detecting

whether ‘‘fiddling’’ has occurred with the use of p-values presented

in published, peer-reviewed articles. These methods are not

intended to investigate publication bias as is sometimes done in a

meta-analysis. We believe that publication bias that is present in a

meta-analysis is a separate concept from that of fiddling with

results in a specific investigation. The tendency for a journal to

publish significant findings (versus non-significant ones) may

provide incentive for fiddling. Conversely, fiddling with a result

could possibly lead to a paper being published as a result of

publication bias that might not have been published otherwise.

More discussion comparing fiddling with publication bias is given

in a final discussion section.

Our proposed method involves examining the distributions of p-

values reported in collections of literature to detect the inappro-

priate manipulation of statistical analyses to produce p-values that

appear to be significant when the initial analyses produced results

that were nearly, but not quite, statistically significant. The focus of

the proposed tests is to determine whether there is a noticeable

pattern in the number of p-values between 0.05 and 0.075 versus

those between 0.075 and 0.1 (any intervals of equal length could

be used). P-values are assumed to have been collected from N

independent studies. As a random variable, a valid p-value has a

uniform distribution on the interval 0 to 1 under the null

hypothesis, and it has a distribution that should be monotonically

decreasing on this interval if the alternative hypothesis is true (see

[6] for more discussion of this). Thus, if no fiddling has occurred,

there is an ‘‘expected relationship’’ between the number of p-

values between 0.05 and 0.075 and those between 0.075 and 0.1.

If this relationship is not what is expected, then there is evidence

that fiddling has occurred among the studies collected for analysis.

In our method, simulations are used to generate distributions of

p-values in which fiddling both did and did not occur. First, p-

values are simulated under a null hypothesis of no fiddling. Then,

p-values are simulated under an alternative hypothesis that

fiddling has occurred. The simulation procedure for generating

p-values is described in the next section 2. We then conduct an

assessment of the quality of the procedure for simulating p-values.

This involves evaluating the sampling variability in the null

distribution of p-values and determining whether the alternative

distribution (i.e., a distribution for which fiddling has occurred) is

detectable as different from the null case. In a fourth section we

propose a simple test that can be used by an investigator studying a

body of literature that takes a single vector of p-values and

evaluates whether there is evidence that fiddling has occurred

among the original studies contributing p-values to that vector.

Next, we describe a test using a mixture model approach that uses

known theoretical properties of p-values as random variables. A

final section discusses the proposed method within the broader

context of publication bias, the role of fiddling on effect sizes, the

number of studies required to carry out the proposed method, and

the issues to consider when designing a study for the purpose of

investigating fiddling.

Simulation Procedure
2.1. Simulation under the null hypothesis of no

fiddling. Two terms that are used throughout are level 1 test

and level 2 test. By level 1 tests, we refer to the tests of individual null

hypotheses in the individual studies, the p-values from which then

become the data for the level 2 tests of fiddling. To simulate p-

values under the level 2 null hypothesis of no fiddling, we first

specify that the level 1 test statistics have a normal distribution

under the level 1 nulls, and then we specify a distribution of effect

sizes for the level 1 test statistics, given that some of the nulls will

be false. Specifically, we set the distribution of the level 1 test

statistics to be:

Table 1. Pseudo-Code to Generate p-Values Under the Level 2 Null Hypothesis of No Fiddlinga.

Pseudo-Code Comments

Compute d = 1/2

Compute m= .8

Compute s= .4

For i = 1 to N N is the number of level 1 hypotheses being tested.

Compute B = Bernoulli(d)

Compute Z = Normal(0,1)

Compute l= Normal(m,s)

Compute T = B*Z+(12B)*(Z+l)

Compute pi = 2*(1-CDF_Normal(0,1,|T|)) This is for two-tailed testing.

Next i

aThe code above was implemented in R (www.r-project.org).
doi:10.1371/journal.pone.0046363.t001

Tests to Detect ‘‘Fiddling’’ in Statistical Analyses

PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e46363



T~ddZz(1{d)(Zzl), where d is a mixing parameter between 0

and 1, Z represents the standard normal distribution, and l is a

non-centrality parameter that itself can be a randomly distributed

variable. For our initial simulations, we set d = K and let

l,N(0.8;0.4). The pseudo-code to generate the p-values under

this scenario is as shown in Table 1.

2.2. Simulation when the level 2 null hypothesis of no

fiddling is false (i.e., there is fiddling). In addition to those

items specified above, we now need to specify the number of

additional tests required when one obtains a p-value in the interval

(a,a+i], where i is some small positive constant (e.g., 0.025) for a

level 1 test. Let us denote this number m. We use m = 4. Next, we

need to specify the correlation structure among the m+1 test

statistics, which we can denote T1 to Tm+1. The correlation

structure used here is compound symmetric with correlation r
where, initially, r= 0.95, reasoning that 0.95 may be a bit

conservative (i.e., high) and thereby could cause us to underesti-

mate the sensitivity (power) of our procedure. The pseudo-code to

generate the p-values under this scenario is as shown in Table 2.

Evaluating the Simulated Data
This section describes a scenario in which sampling variability is

first assessed by simulating two level 2 null distributions for

evaluating the performance of a test by its type I error. When the

test is conducted on two null distributions, the test for fiddling

should have a type I error close to or below the nominal level (0.05

used here). Next, simulated p-values are obtained from a

distribution where fiddling has occurred, and this distribution is

tested against one of the null distributions to determine the power

of the test. The tests used are simple two-way tests of contingency

tables as described in the following testing scenario:

1. Two level 2 null data sets were simulated with N tests.

2. A two-way contingency table was generated as shown in

Table 3.

3. A chi-square test was conducted and a p-value obtained from a

test in which the proportion of p-values between 0.05 and

0.075 was equal in both null distributions. Note that only p-

values between 0.05 and 0.1 were used. The p-value from this

level 2 test is equivalent to a test in which the row and column

categories in Table 3 are independent. The chi-square test may

be unreliable when cell counts in the table are small; thus, a

second p-value was computed by using Fisher’s exact test for

the same hypothesis. Two-tailed p-values were used, but one-

tailed p-values could be computed.

4. A level 2 alternative hypothesis data set (fiddling) was simulated

and a two-way contingency table was generated as shown in

Table 4.

5. The same tests as in 3 were computed for Table 4.

6. The above steps were repeated 5000 times.

7. Power and type I errors were reported for each test.

8. The above procedures were repeated for N = 400, 600, 800,

1000, and 2000.

The results of the testing scenario are shown in Table 5. The

results show that p-values are being simulated in such a way that a

reasonable test for fiddling maintains a type I error below the

nominal level but does not gain substantial power until the number

of tests exceeds 1000. We note that Ridley et al. [4] used over 3000

numerically reported p-values as discussed in the Introduction (i.e.,

they ignored p-values that were rounded below a threshold of

significance and reported with a ‘‘less than’’ sign).

Table 2. Pseudo-Code to Generate p-Values When the Level 2 Null Hypothesis of No Fiddling is False.

Pseudo-Code Comments

Compute d = 1/2

Compute m= .8

Compute s= .4

Compute r= .95

Compute a= .05

Compute i= .025

Compute m = 4

For i = 1 to N N is the number of level 1 hypotheses being tested.

Compute B = Bernoulli(d)

Compute Z = Normal(0,1)

Compute l= Normal(m,s)

For r = 1 to m+1

Compute Zr = (r(1/2))*Z+ (1-r)(1/2)*Normal(0,1) This formula presupposes that r is positive.

Compute Tr = B*Zr+(12B)*(Zr+l)

Next r

Compute Tmax = max(|T1|…|Tm+1|)

Compute pi = 2*(1-CDF_Normal(0,1,|T1|)) This is for two-tailed testing.

Compute pmin = 2*(1-CDF_Normal(0,1,|Tmax|))

If (pi.a AND pi#a+i) pi = pmin.

Next i

doi:10.1371/journal.pone.0046363.t002

Tests to Detect ‘‘Fiddling’’ in Statistical Analyses
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A Simulation Study Evaluating a Test for Fiddling
Data were simulated as described above. The testing described

in the prior section used two level 2 null distributions for type I

error and a level 2 alternative distribution and a null distribution

for power evaluation. The tests described here are different in that

a single distribution of p-values was used. The test compares the

proportion of p-values in the interval 0.05–0.075 with those in the

interval 0.075–0.1. This test for fiddling is appropriate for any

situation in which a sufficient number of p-values are obtained

from N studies. Some indication of how large N should be is given

in the results that follow. Define the following statistics:

N = total number of tests

x1~#p-values [ (0:05,0:075�

x2~#p-values [ (0:075,0:1�

n~x1zx2:

Two different tests are considered below.

Test 1 was Conducted as Follows
Define the following:

p1~population proportion [ (0:05,0:075�

p2~population proportion [ (0:075,0:1�

The hypothesis test is
Ho : p1§p2

Ha : p1vp2

for each simulated

distribution of p-values. Note that this test is likely to have a

smaller type I error than nominal because it is expected that, in

general, the above level 2 null hypothesis will tend to be true in

any situation in which some p-values are truly from an alternative

distribution of p-values, that is, the level 1 null hypothesis is not

true for some level 1 p-values. This is because, as mentioned

earlier, the distribution of a level 1 p-value under a null hypothesis

is expected to be uniform on the interval 0–1 and is expected to be

monotonically decreasing on the interval 0–1 under a level 1

alternative hypothesis. Thus, if a collection of N p-values is

obtained, some for which the level 1 null hypothesis is true and

others for which it is false, it is expected that there will be a larger

number of smaller p-values than larger p-values. Estimates of the

above parameters are

p̂p1~
x1

N
p̂p2~

x2

N
:

A proportions test using normal approximation with continuity

correction was done at a type I error threshold of 0.05 (i.e., the size

of the rejection region for this test is 0.05). Note that the two

statistics are technically not independent because they both

depend on the same N. However, given that N is substantially

larger than x1 and x2, the effect of this dependence should be

minimal.

Test 2 was Conducted as Follows
Define the following conditional probability,

p1~ Pr (p value [ (0:05,0:075�Dp value [ (0:05,0:1�):

The estimator for this probability is p̂p1~
x1

n
, and the level 2

hypothesis test is
Ho : p1§0:5

Ha : p1v0:5
. This is a test conditional on the

event that a level 1 p-value lies in the interval 0.05–0.1. It is also

expected to have a type I error below the nominal error rate

because the level 2 null hypothesis is expected to be true in any

situation in which some level 1 tests produce p-values from a

distribution under a level 1 alternative hypothesis, for the same

reason as described above for Test 1. A binomial test was

conducted here (i.e., not a normal approximation) using the same

size of rejection region as for Test 1.

Type I error and power for the two tests (Test 1 and Test 2) are

shown in Table 6. The results from the two tests are nearly the

same. The results suggest that it makes little difference whether a

test of proportions (out of N tests) is done or whether the

conditional test that only considers p-values in the interval 0.05–

0.1 is used. Both tests are conservative in that type I error rates are

below nominal levels. Power begins to rise to acceptable levels at

around N = 800 to 1000 p-values.

A Mixture Model Approach to Testing
5.1. Overview of the procedure. In this approach, p-values

resulting from N tests are considered and a mixture model of the

form below is used to model the p-values,

f pið Þ~lz(1{l)b(pi; r,s), pi[(0,1),i~1, . . . ,N

where pi is a p-value for the ith level 1 hypothesis test (out of N

tests), l[(0,1) is a weight on the uniform component (i.e., a p-value

from a test for which the null hypothesis is true has a uniform

distribution), and b(p; r,s) is a beta probability density function

(pdf) with parameters r and s. The beta pdf is used to model p-

values from tests for which the level 1 alternative hypothesis is true.

This is the model used by Allison et al. [6] to model the

distribution of p-values from tests of differential expression in

Table 3. Contingency Table Generated From the Simulation
of Two Level 2 Null Data Sets With N Tests Each.

# p-values M
(0.05,0.075] # p-values M (0.075,0.1]

Null 1 N11 N12

Null 2 N21 N22

doi:10.1371/journal.pone.0046363.t003

Table 4. Contingency Table Generated From the Simulation
of a Level 2 Null Hypothesis Data Set and a Level 2 Alternative
Hypothesis Data Set (Fiddling).

# p-values M
(0.05,0.075] # p-values M (0.075,0.1]

Null 1 N11 N12

Alternative N21 N22

doi:10.1371/journal.pone.0046363.t004

Tests to Detect ‘‘Fiddling’’ in Statistical Analyses
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microarray studies. Maximum likelihood estimation is used to fit

the model to the N p-values.

The primary hypothesis considered here is a level 2 null

hypothesis that no fiddling has occurred versus an alternative that

fiddling has occurred. If each pi for which the level 1 alternative

hypothesis is true is obtained from a valid level 1 statistical test,

then the beta distribution will be monotonically decreasing on the

interval 0–1. The ability of a beta distribution to serve as a model

for the distribution of a p-value under an alternative hypothesis

was studied in Hu et al. [7]. An objective function quantifying the

fit of a model is the logarithm of the likelihood function computed

at maximum likelihood estimates (MLEs) of parameters, given by

OBJ~
PN
i~1

log f̂f pið Þ
h i

where f̂f denotes the fitted model. A first

claim made here is that, regardless of whether the distribution of p-

values contained fiddling or not, the value of OBJ will be nearly

the same.

Shown in the top panel of Figure 1 is the boxplot of OBJ for

1000 simulated distributions of 1000 p-values each: i.e., where

fiddling did not occur and where fiddling did occur. As shown in

the figure, the objective function value tends to be slightly higher

when fiddling has occurred, but the two distributions have

substantial overlap. A second criterion considered was the

difference in the value of the fitted model to a p-value equal to

0.05 with that of the fitted model to a p-value equal to 0.1. This

difference is denoted as Diff ~f 0:05ð Þ{f (0:1) with use of the

model notation above. A value of Diff was computed for p-values

generated under both no fiddling and fiddling. Boxplots for the

two distributions are shown in the bottom panel of Figure 1. The

values of Diff for a distribution of p-values with fiddling tend to be

slightly larger than those with no fiddling, but there is substantial

overlap of the two sampling distributions of DIFF. An assumption

that we will make, on the basis of the above simulations, is that a

mixture model can be fit to a given collection of p-values, that is, a

collection for which it is not known whether fiddling has occurred

or not. Furthermore, this fitted model can be used to compute an

expected number of p-values in the interval (0.05,0.075] and in the

interval (0.075,0.1] when the level 2 null hypothesis of no fiddling

is true. This is analogous to the method of Ridley et al. [4], who

used the assumed smoothness of a distribution of p-values in a

subinterval of 0–0.05 to construct an expected number of p-values

in the lower portion and the upper portion of a subinterval under a

situation of no reporting bias.

5.2. The proposed testing procedure. Our proposed

mixture model approach is as follows:

1. Obtain a collection of p-values from N studies.

2. Fit the above mixture model to this distribution of p-values

using maximum likelihood estimation. We used the R function

‘‘optim.’’ Numerical optimization procedures do not always

converge, and this is somewhat difficult to control in simulation

settings, in which thousands of models are fit to simulated data.

Mixture models can be particularly challenging. This was

studied in detail in Xiang et al. [8]. We found that N = 400 p-

values was large enough to obtain a good fit of the model to

simulated distributions of p-values, whether the p-values

contained fiddling or not.

3. From the fitted model, obtain the expected number of p-values

in the interval (0.05, 0.075] and between (0.075, 0.1]. Call

these two numbers E1 and E2, respectively. They are

computed by calculating (using an approximation) the

cumulative density under the fitted model in the two intervals

multiplied by N, the total number of p-values.

4. Obtain the two numbers, x1~#pvalues [ (0:05,0:075� and

x2~#pvalues [ (0:075,0:1�.
5. Construct the two-way contingency table as shown in Table 7.

6. Test for fiddling by using a chi-square test or a Fisher’s exact

test and report the level 2 P-value from the two tests.

Table 5. Results of a Testing Scenario for Evaluating Simulated Dataa.

N Type I Error (Chi-Sq Test) Type I Error (Fisher’s Test) Power (Chi-Sq Test) Power (Fisher’s Test)

400 0.0250 0.0326 0.1896 0.2308

600 0.0300 0.0384 0.3202 0.3632

800 0.0370 0.0456 0.4494 0.4882

1000 0.0356 0.0418 0.5354 0.5780

2000 0.0366 0.0402 0.8838 0.8952

aTwo tests were conducted to evaluate type I error and power for various sample sizes.
doi:10.1371/journal.pone.0046363.t005

Table 6. Results of the Performance of Two Tests for Detecting Fiddling in a Distribution of p-Valuesa.

N Type I Error (Test 1) Type I Error (Test 2) Power (Test 1) Power (Test 2)

400 0.0216 0.0216 0.4350 0.4350

600 0.0224 0.0220 0.6132 0.6132

800 0.0208 0.0198 0.7424 0.7416

1000 0.0200 0.0198 0.8222 0.8218

2000 0.0156 0.0152 0.9846 0.9842

aTest 1 considers the total of N p-values and Test 2 considers only those in the interval (0.05, 0.1]. Type I error and power for the two tests are reported for various
sample sizes.
doi:10.1371/journal.pone.0046363.t006

Tests to Detect ‘‘Fiddling’’ in Statistical Analyses
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5.3. Properties of the test using simulations. The steps of

the simulation procedure are listed below. Two different scenarios

were considered to determine whether the fitted mixture model

was affected by fiddling. If it is not affected by fiddling, then it

serves as a useful model for computing expected numbers of p-

values under the level 2 null case of no fiddling.

A. Data for N tests are simulated as described earlier for a level 2

null case of no fiddling and a case in which fiddling has

occurred (i.e., a level 2 alternative case). Denote the two

resulting collections of p-values as P.null and P.alt, respec-

tively.

B. The mixture model is fit to the P.null p-values.

C. Obtain the expected number of p-values as described in Step

3 above.

D. Obtain the actual numbers of p-values, x1 and x2, that are

defined in Step 4 above, from both P.null and P.alt.

E. Construct two contingency tables as described in Step 5

above and shown in Table 7, with one using the actual counts

from P.null and one using the counts from P.alt. The counts

from P.null will be used to assess type I errors, and the counts

from P.alt will be used to evaluate power.

F. Conduct the tests in Step 6 above.

G. Repeat 1000 times and compute type I error and power at a

level 2 rejection region of size a2.

H. Repeat for number of studies (i.e., p-values) equal to N = 400,

600, 800, 1000, and 2000.

I. Redo the above Steps A–H, but modify Step B by fitting the

mixture model to the collection of p-values from P.alt.

Figure 2 diagrams the flow of steps A – F with steps G, H, and I

described in the caption to the figure. The results from these steps

are reported in Table 8 for the scenario in which the mixture

model was fit to the p-values from P.null from each simulated data

set. The results are reported in Table 9 for the scenario in which

the mixture model was fit to the p-values from P.alt obtained from

each simulated data set. An adjustment was made to the size of the

level 2 rejection region (denoted by a2in Step G above) for the

results reported in Tables 8 and 9. For a rejection region of size

0.05, the type I error rate for the tests based on the mixture model

was much smaller than for the proportions tests described in

section 4. This made a comparison of power between the two types

of tests challenging. So the size of the rejection region was

increased to a2 = 0.1 (in step G above) for the tests based on the

mixture model. This resulted in an actual type I error rate for the

mixture model approach that is similar to that for the tests of

proportions in the prior section 4. So type I error rates are similar

across Tables 6, 8, and 9, making power comparisons easier across

these tables.

Several remarks can be made regarding the simulation results.

First is that the type I error rate was below the nominal level of

0.05. This suggests that the fitted mixture model accurately

predicted the number of p-values in the two intervals (0.05, 0.075]

and (0.075, 0.1]. Moreover, for the purposes of type I error, it

makes no difference whether the model is fit to p-values simulated

with fiddling (P.alt) or with no fiddling (P.null). Similarly, if the

Figure 1. Boxplots of OBJ and DIFF for the conditions of fiddling or no fiddling. Boxplots compare the distributions (from 1000
simulations) of comparison statistics from mixture models fitted to a distribution of p-values for which no fiddling has occurred (i.e., a level 2 null
distribution) and to a distribution of p-values for which fiddling did occur. OBJ is the objective function calculated at maximum likelihood estimates
of parameters of the model, and DIFF is a difference in the fitted model to 0.05 versus 0.1.
doi:10.1371/journal.pone.0046363.g001

Table 7. Two-way Contingency Table for the Mixture Model
Approach.

# pvalues M(0.05,
0.0075] # pvalues M(0.075, 0.1]

Expected E1 E2

Actual x1 x2

doi:10.1371/journal.pone.0046363.t007
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mixture model is fit to either P.null or P.alt, the power of the test to

detect fiddling when it has actually occurred is nearly the same.

Power starts to rise to values generally considered acceptable for

level 2 testing when the number of p-values exceeds 800. This

suggests that, for a user who will not know whether fiddling has

occurred in a practical application, the fitted mixture model is

Figure 2. Steps A – F for the simulation procedure as described in section 5.3. The steps are repeated 1000 times for various sample sizes
given in step H from section 5.3. For the final step I in section 5.3, the dashed line above for step B is redirected to instead connect the P.alt P-values
to fitting the mixture model.
doi:10.1371/journal.pone.0046363.g002

Table 8. Results for the Scenario in Which the Mixture Model was Fit to the p-Values From P.nulla.

N Type I Error (Chi-Sq Test) Type I Error (Fisher’s Test) Power (Chi-Sq Test) Power (Fisher’s Test)

400 0.021 0.032 0.339 0.417

600 0.017 0.034 0.564 0.608

800 0.019 0.027 0.711 0.756

1000 0.022 0.029 0.791 0.817

2000 0.021 0.028 0.976 0.982

aType I error and power are reported for two different tests for contingency table data.
doi:10.1371/journal.pone.0046363.t008
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robust to this lack of knowledge. Power is somewhat higher for

Fisher’s exact test versus the chi-square test, but the type I error

rate is also slightly larger.

In conclusion, we have shown that tests of fiddling can be

constructed and successfully applied to collections of p-values,

which one can obtain from published literature. Different tests

have been illustrated that all have acceptable level 2 type I error

rates and have good power under realistic scenarios when the

number of p-values available for analysis approaches 1000. These

tests can be used going forward to study the extent to which

fiddling seems to be occurring in the research literature and the

factors associated with greater or lesser fiddling.

Discussion

To summarize, we have shown that our proposed tests for

fiddling can be successfully applied to vectors of p-values, which

can be extracted from published papers. Several different tests

were evaluated, and all had type I error rates at or below the

nominal level and had good power in realistic circumstances,

provided the number of p-values in the vector analyzed was near

1000. Our tests will be useful in the next stage of our research,

wherein we will investigate the extent to which fiddling seems to be

occurring in various research literature within the domains of

nutrition and obesity and which factors are associated with the

extent of fiddling. There are several points of discussion related to

this particular endeavor or one similar to it.

On the surface, the topic of publication bias mentioned in the

introduction may seem to be tightly related to the topic of fiddling

discussed here. We generally think of publication bias as the

tendency for statistically significant results to appear more

frequently in literature versus non-significant results. The effect

of this publication bias on the distribution of a collected set of p-

values would be to steepen the descent of a curve that is fitted to a

distribution of p-values as p-values go from 0 towards larger values

– that is, publication bias in which significant findings are more

likely to be published will only steepen the monotonic decreasing

nature of the expected sampling distribution of observed p-values.

The proposed mixture model will accommodate this. The mixture

of a uniform and a two parameter beta distribution is quite flexible

in capturing varying shapes on the interval 0 to 1. Fiddling, as we

describe it, will produce a more distinct aberration in the

distribution of p-values near 0.05 (or an alternative alpha level

chosen). So even in the presence of publication bias, the mixture

model should work in the same way that it is reported here. If the

particular aberration is detected by our method, intuition would

suggest that the detection is specific to fiddling. However, one

could not be certain that the detection was not the result of some

peculiar form of publication bias.

The relationship of fiddling to a ‘delayed analysis’ (i.e., waiting

for a few more events to come in) is also worth some discussion.

Let us consider that an investigator had a fixed number of cases

preplanned for his/her study, repeatedly conducted significance

tests as data accumulated, terminated the study either when the

result was statistically significant or when the final sample size had

been reached (whichever came first), and made no corrections for

such repeated testing. Such procedures would increase type 1 error

rates under the null hypothesis and increase power under the

alternative hypothesis, but would not meet our definition of

fiddling. Our definition of fiddling entails deciding to conduct

additional testing only when p-values are just above the threshold

for significance. Moreover, the procedure of repeated interim

testing described above would not produce the characteristic dip in

the distribution of p-values we have described.

In contrast, if an investigator collects an initial set of

observations and then decides to collect an additional number of

cases if and only if the initial result is just above the threshold of

significance, then this is a form of fiddling as we have defined it

and it would produce a ‘depletion’ of published p-values just-above

the significance threshold. As discussed above in the comparison

between publication bias versus fiddling, this ‘fiddled with result’

may then lead to a greater chance of publication as a result of

publication bias.

If an effect is present but small, then collecting additional cases

may lead to a statistically significant result (i.e., p-value ,0.05) that

is not of practical significance. Interval estimates of effect sizes can

be as valuable (in some cases more valuable) as the p-values to

which they correspond. As such, one might wonder how fiddling

would be detected when effect sizes are reported in the literature in

lieu of, or in addition to, p-values. The effect of fiddling on

estimates of effect size should also produce a pattern if a sufficient

number of interval estimates of effect sizes could be gathered. If,

say, estimates are of contrasts and that contrasts not equal to zero

are ‘significant,’ then fiddling would seem to produce an unusually

large number of contrasts that narrowly miss covering zero. How

to detect this aberration in interval estimates is not clear to us right

now. Still, if fiddling is detected in a collection of p-values, a useful

follow-up investigation would be to consider estimated effect sizes

(if available) that correspond to p-values just below 0.05 and what

proportion of those correspond to effects that are considered of

practical significance for the particular application.

Another point of discussion is the seemingly large numbers of p-

values that are needed for our proposed method to work

effectively. Our method to detect fiddling requires a sufficient

number of p-values in a narrow interval near some threshold (we

used 0.05 as the most common threshold for ‘statistical signifi-

cance’). Given that p-values can fall in the interval 0 to 1, the

number of studies must be sufficiently large to produce a sufficient

number of p-values in the subinterval 0.05 to 0.1 so that a test for

Table 9. Results for the Scenario in Which the Mixture Model was Fit to the p-Values From P.alta.

N Type I Error (Chi-Sq Test) Type I Error (Fisher’s Test) Power (Chi-Sq Test) Power (Fisher’s Test)

400 0.017 0.024 0.343 0.416

600 0.019 0.030 0.578 0.635

800 0.021 0.031 0.716 0.758

1000 0.024 0.031 0.817 0.842

2000 0.021 0.028 0.980 0.982

aType I error and power are reported for various sample sizes for two different tests using contingency table data.
doi:10.1371/journal.pone.0046363.t009
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fiddling can be carried out with reasonable power. Randomly

selected p-values from, say, 20 studies may only produce as few as

1 or 2 p-values in the interval 0.05 to 0.1, and the test for fiddling

as we propose it would have extremely little power. However, one

could still proceed to conduct the binomial test for fiddling that is

described in section 4 (test 2). If one could pre-screen literature to

randomly select p-values near 0.05, then the binomial test as

described in section 4 (test 2) could be carried out with a smaller

sample of p-values while retaining an adequate level of power. So

having adequate power to detect fiddling of p-values in a narrow

subinterval near 0.05 is one reason why a sufficiently large number

of p-values are needed. When using the mixture model approach

from section 5, there is a second reason for requiring a large

number of p-values. This reason relates to convergence of the

optimization algorithm that produces maximum likelihood esti-

mates of parameters in the mixture model. In our experience, for a

particular analysis 100–200 p-values in the interval of 0 to 1 are

sufficient to obtain convergence of the algorithm. With a particular

analysis, the user has the luxury of tweaking starting values for the

algorithm so that the chance of convergence is enhanced. This is

not possible in simulations. The minimum we used in the

simulation study to assure convergence in the 1000 simulations

was 400 p-values.

We acknowledge that collecting such a large number of p-values

entails considerable work and are experiencing that directly as we

begin the next stage of our work as described in the first paragraph

of this section. As also noted earlier, Ridley et al [4] used 3000

reported p-values. We currently have applied projects using this

technique underway and have multiple students and trainees

extracting p-values from hundreds of papers. For the future,

natural language processing might be adapted to automatically

search a body of literature and extract specific information

relevant to a study as described herein. For the time being,

however, we simply acknowledge as a challenge the large number

of studies required for the detection of fiddling in the literature. It

is unlikely that an individual investigator that is interested in

whether fiddling is occurring in research would have sufficient

interest, or the time, to carry out such an undertaking. An

investigation of fiddling would more likely involve a team of

researchers interested in studying research integrity and what

factors play a role in buttressing research integrity. Some factors of

interest in such a study might be tenured versus untenured

research faculty, industry funded or non-industry funded research,

before versus after the development of the CONSORT Guide-

lines, and so forth. Our proposed method for detecting fiddling

could have utility in supporting such studies, and the studies would

need to be sufficiently broad to allow for a large number of

collected p-values. If a planned investigation into fiddling was too

narrow, e.g., the effects of a very specific treatment on a very

specific disorder, there may simply not be enough p-values for

collection.

Given the labor intensive effort involved to conduct an

investigation of fiddling, a clear plan for the investigation up front

becomes vitally important. Some key questions to be considered in

doing so are: 1) How should one best extract p-values from the

literature?; 2) Which areas of study and/or which publications and

years should be considered? (For example, in some areas of

genomics, alpha levels typically are set at levels between 1024 and

1028, rather than 0.05); and 3) How should rounded p-values be

used if used at all? Ridley et al. [4] dealt with these questions to

some extent. For instance, they used raw reported p-values from

three identified prominent journals covering two years and

ignored rounded p-values.

In addition to the above questions dealing with technical

logistics for a general investigation of fiddling, more specific

scientific questions that are of interest can also shape the plan and

conduct of the investigation. Such questions are, 1) Are ‘fiddling’

rates higher in high profile journals that are harder to get

published in versus lower profile journals? 2) Has the desire to

‘fiddle’ changed over the years and what time-frame should

suitable papers be selected from? 3) Does ‘fiddling’ vary by subject

area? In answering question 1, an analysis stratified by publication

may need to be considered. Or separate analyses of fiddling for

each journal conducted separately. Since the proposed tests for

fiddling use data in two by two contingency tables, each test

corresponds to a test of a difference in two proportions. As such,

an interval estimate of this difference can be obtained and

‘significant differences’ in effect sizes of fiddling in one journal (or

time period) versus another journal (or time period) can be

compared. These and other interesting applied questions can be

addressed going forward using the method we have offered herein.

By doing so, we hope that areas in which research practices can be

improved can be identified and constructive feedback provided to

the field.
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