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Abstract

Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies
have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo.
We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a
mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of
immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering
most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the
transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1
overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides
adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1
mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral
mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/
hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that
Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.
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Introduction

Oral pseudomembranous candidiasis (thrush) is the most

prevalent form of Candida infection in patients with weakened

or immature immune systems, such as HIV+ children, neonates

and patients with malignancies [1,2,3]. A resurgence of oral thrush

in children was recently reported due to the rising use of inhaled

corticosteroids, affecting up to 40% of children after long term

treatment [4]. Surprisingly, up to 15% of children with no

underlying immune abnormalities present with oral thrush lesions

in the pediatric practice [5].

Pseudomembranous candidiasis is one of several clinical forms

of Candida infection and has distinct clinical and histopathological

characteristics. Clinically this infection presents as white plaques

on the oral mucosa, which can be removed by gentle rubbing [6].

These pseudomembranes were recently recognized as archetypal,

complex tissue biofilms and were proposed to be responsible for

the recalcitrant nature of this infection [7,8]. Using a mouse model

of oral thrush we characterized these biofilms and discovered that

they are complex, comprising of yeast, hyphae, commensal

bacteria, and neutrophils that form nests within the biofilm mass

[9]. Both host and fungal-derived products fill the intercellular

spaces, thus forming a supporting biofilm matrix [9]. Although

several C. albicans gene products have been implicated in biofilm

development on abiotic surfaces [10,11,12,13,14,15], information

on genes that enable biofilm formation on mucous membranes has

only recently begun to emerge [16].

The transcription factor Bcr1 governs biofilm formation in vivo

in the catheter, denture and vaginal models [16,17,18]. Although

Bcr1 is not required for hyphal morphogenesis, it acts as a positive

regulator of hyphal-specific adhesins [11,18]. Manipulation of

Bcr1 downstream target genes through mutation and overexpres-

sion showed that the surface adhesins Als3 and Hwp1 significantly

contribute to biofilm formation in the catheter model. Because

biofilm formation on abiotic and biological surfaces may be

regulated by similar processes we hypothesized that a bcr1/bcr1

mutant may also be defective in oral mucosal biofilm develop-

ment. Using both in vivo and in vitro models we tested the ability

of this mutant to form biofilms on the oral mucosa and dissected

the specific contribution of Bcr1-regulated genes in this phenotype.

Results and Discussion

To study the contribution of Bcr1-regulated genes in mucosal

biofilms, a mouse oral infection model was used where C. albicans

forms white pseudomembranes (biofilms) on the dorsal surface of

the tongue [9]. Tongues from animals infected with genetically

manipulated strains were excised and examined by macroscopic

‘‘clinical’’ evaluation, assessment of cultivable fungal burden, and

histologic analysis to visualize the thickness of biofilms. Consistent
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with results in the mouse vaginal mucosa model [16], we found

that the bcr1/bcr1 strain was deficient in forming a clinically visible

mucosal biofilm on the tongues of immunocompromised mice in

vivo (Fig. 1). At the histologic level this mutant formed a thin,

interrupted biofilm on the dorsal surface of the tongue (Fig. 1,

arrows). These results are in agreement with the recently reported

attenuated biofilm phenotype of a bcr1/bcr1 mutant in the rat

denture biofilm model [17].

Surface area estimates of pseudomembranes, examined macro-

scopically during necropsy, showed approximately 80–100%

coverage of the tongue dorsal surface with biofilm formed by the

reference and reconstituted strains, while less than 10% of the

tongue surface in mice infected with the bcr1/bcr1 mutant was

covered by biofilm (Fig. 2A). In accordance with this we also found

that the tongue fungal burden of mice infected with the bcr1/bcr1

mutant was significantly lower than that of mice infected with

either the reference or complemented strains (Fig. 2B).

C. albicans also forms a biofilm when grown on a three-

dimensional model of the human oral mucosa [9]. When grown on

this model, the bcr1/bcr1 mutant was slow in forming a mature

biofilm, and after 24 hours of growth formed a biofilm comprised

mainly of yeast cells, in contrast to its reference and complemented

strains (Fig. 3). Moreover, this mutant was significantly less capable

of triggering mucosal tissue damage (Fig. 4). This could be

attributed to the dominant yeast morphotype in biofilm cells,

which lacks expression of several hyphae-specific epithelial

adhesins that may also be involved in oral epithelial cell damage

[19,20,21].

Adhesion is a fundamental process under Bcr1 control that

promotes biofilm formation on catheter surfaces [18]. Therefore,

we evaluated the contribution of the Bcr1-regulated adhesins Als1,

Als3 and Hwp1 in the capacity of C. albicans to form a biofilm on

the oral mucosa in vivo. Increased expression of ALS1 in the bcr1/

bcr1 mutant background did not significantly affect the surface

area covered by biofilm (Fig. 2A), increase the tongue fungal

Figure 1. Biofilm formation and histological examination of the tongues of mice infected with the bcr1/bcr1 mutant, DAY185
(reference) and complemented strains. Tongues of immunocomrpomised animals were excised after five days of infection and the dorsal aspect
was digitally photographed. Four mice were infected with each strain and representative clinical pictures are shown from 1 mouse in each group on
the left panel. On the right panel, representative PAS-stained thin sections of the tongue of one mouse per group are shown. Arrows indicate the
biofilm thickness.
doi:10.1371/journal.pone.0016218.g001

Figure 2. Biofilm surface area and fungal burden of animals
infected with the bcr1/bcr1 mutant and related strains. (A)
Percent tongue surface area covered by biofilm. Results represent the
average of 4 tongues in each group. Image J was used to calculate the
area covered by white plaques as well as the total surface area of each
tongue. Error bars represent standard deviations. *p = 0.0000 for bcr1/
bcr1 mutant versus reconstituted strain, **p = 0.026 for bcr1/bcr1TEF-
HWP1 versus bcr1/bcr1 mutant strain. (B) Tongue fungal burden. Results
represent the average of four mice per group and error bars represent
standard deviations. *p = 0.0004 for bcr1/bcr1 mutant versus reconsti-
tuted strain, **p = 0.0002 for bcr1/bcr1TEF-HWP1 versus bcr1/bcr1
mutant strain.
doi:10.1371/journal.pone.0016218.g002
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burden (Fig. 2B), or promote mucosal biofilm formation at the

histologic or macroscopic level (Fig. 5). Similarly, expression of

ALS3 under the TEF1 promoter did not significantly affect the

surface area covered by biofilm (Fig. 2A), the tongue fungal

burden (Fig. 2B), or the biofilm thickness (Fig. 5, arrows); the

strain’s intermediate phenotype is discussed further below. A clear

example of phenotypic rescue from overexpression was observed

with HWP1. Specifically, HWP1 overexpression in this genetic

background improved biofilm formation and increased fungal

burden in the animals significantly (Fig. 2A, 2B, 5). This finding

agrees with observations in the catheter biofilm model where this

construct partly but significantly reversed the bcr1/bcr1 phenotype

[18]. In addition to being important in biofilm development

[12,22], Hwp1 is also a well established oral epithelial cell adhesin

[20], which plays a role in the pathogenesis of oral infection

[23,24]. Our findings provide additional support for the role of

Hwp1 in oral infection, and in addition argue that the reduced

expression of HWP1 in the bcr1/bcr1 mutant is a major cause of the

mutant’s oral epithelial biofilm defect.

ALS3 overexpression in the bcr1/bcr1 background partly

reversed the bcr1/bcr1 phenotype, based upon visual inspection

(Fig. 5). However, the mean percentage surface area covered by

biofilm and the CFU counts from infected tissue with this strain

did not reach statistical significance (Fig. 2A, 2B). These findings

were thus somewhat in contrast with data in the venous catheter

biofilm model showing that, although Als3 is not absolutely

required for biofilm formation, ALS3 overexpression completely

reverses the biofilm phenotype of the bcr1/bcr1 mutant [18]. We

note that these two biofilm experimental systems are quite

different, and that C. albicans adhesins exhibit high substrate

specificity, even when they have highly related sequences in their

binding domains [25]. In addition, innate host defense mecha-

nisms in the oral cavity, coupled with salivary flow and mechanical

cleansing by chewing, may modify the ability of these strains to

establish a biofilm in vivo.

However, because regulation of biofilm-associated gene expres-

sion may vary significantly in different biofilm model systems [17],

we wanted to rule out the possibility that Als3 expression is Bcr1-

independent in the oral mucosa, which could explain the disparate

results with these strains in different model systems. Therefore, we

quantified Als3 gene expression in the bcr1/bcr1 mutant and

adhesin-overexpressing strains, when grown on a three dimen-

sional model of the human oral mucosa. As anticipated, when

grown on an oral mucosa tissue analogue Als3 expression levels

were lower in the bcr1/bcr1 deletion mutant as well as in the ALS1-

and HWP1-overexpressing strains, compared to the reference

strain (Fig. 6). In contrast, Als3 expression levels in the ALS3-

overexpressing strain were three fold higher than the reference

strain (Fig. 6). This finding argues against the possibility of

differential regulation of Als adhesins in the oral mucosa, and

further supports the idea that different experimental systems can

reveal tissue-specific functions of adhesins. Thus our results

Figure 3. Biofilm formed by the bcr1/bcr1 mutant, complemented and reference (DAY185) strains on a three-dimensional
organotypic model of the oral mucosa. Histologic pictures show 406 magnification after 6 and 24 hours of inoculation. Thin sections were
stained with PAS. Arrows indicate biofilms forming on the (apical) epithelial surface of the cultures. Results are representative of one of three
experiments.
doi:10.1371/journal.pone.0016218.g003

Figure 4. Mucosal damage by the indicated strains in the three
dimensional model of the oral mucosa. Cell damage by the bcr1/
bcr1 mutant and reference strains was quantified by the release of
lactate dehydrogenase (LDH) in the media. Results are the mean 6 SD
of three experiments, each condition set up in triplicate. *bcr1/bcr1
mutant significantly different from DAY185 (reference) strain, p = 0.001–
0.03.
doi:10.1371/journal.pone.0016218.g004
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establish that Hwp1, and not Als3, is a critical Brc1 adhesin target

relevant to oral thrush. In agreement with our findings, it has been

reported that biofilm formation in a subcutaneous rat model

requires Bcr1 but not Als3 [26].

Due to the complexity of the structure of oral mucosal biofilms

[9], transcriptional deregulation of a single C. albicans gene is

unlikely to be responsible for mediating loss of the mucosal biofilm

phenotype in the bcr1/bcr1 mutant. This explains the finding that

HWP1 overexpression only partially reversed the bcr1/bcr1

phenotype. We thus sought to identify additional, adhesion-

unrelated genes under the transcriptional control of Bcr1,

contributing to its inability to form mucosal biofilms.

A prominent feature of infections characterized by soft tissue

biofilms is infiltration of infected tissues by neutrophils, which

confer innate immune protection [27,28]. We previously showed

that neutrophils infiltrate the oral mucosal biofilm mass in this

mouse oral infection model [9]. We thus hypothesized that the

bcr1/bcr1 mutant fails to develop a robust biofilm on the oral

mucosa at least partly because it is more efficiently cleared by

biofilm-infiltrating neutrophils. To begin to test this hypothesis we

examined susceptibility of this mutant to killing on plastic by the

HL-60 neutrophil-like cell line using a modification of the XTT

assay [29]. Indeed, we found that the bcr1/bcr1 mutant was more

susceptible to killing than its reference and reconstituted strains,

regardless of the effector to target ratio used in killing assays

(Fig. 7). In fact the effector to target ratio of the bcr1/bcr1 strain

corresponding to the MIC50 in this assay was five times lower than

the reference and reconstituted strains (Fig. 7). These findings were

confirmed when freshly isolated human neutrophils were used in

killing assays (Fig. 8A–B). Finally, we extended these findings to

the oral mucosa, by testing susceptibility of the bcr1/bcr1 mutant to

leukocyte killing on a three-dimensional model of the human oral

mucosa (Fig. 8C). As expected, this mutant was also more

susceptible to leukocyte-inflicted damage when grown on a three

dimensional model of the human oral mucosa (Fig. 8C),

supporting our hypothesis that it may be more effectively cleared

in the oral environment.

Overexpression of HYR1, but not HWP1, in the bcr1/bcr1

background, significantly rescued the higher susceptibility pheno-

type of this mutant to killing by leukocytes both on plastic and on

the oral tissue surface (Fig. 8A–C). These findings confirmed

Figure 5. Biofilm formation and histological examination of the tongues of mice infected with strains overexpressing adhesins
ALS1, ALS3 and HWP1 in the bcr1/bcr1 background. Tongues of immunocomrpomised animals were excised after five days of infection and the
dorsal aspect was digitally photographed. Four mice were infected with each strain and representative clinical pictures are shown from 1 mouse in
each group on the left panel. On the right panel, representative PAS-stained thin sections of the tongue of one mouse per group are shown. Arrows
indicate the biofilm thickness.
doi:10.1371/journal.pone.0016218.g005

Figure 6. Detection of Als3 expression in the bcr1/bcr1 mutant,
reference (DAY185) and adhesin-overexpressing strains on the
3D model of the human oral mucosa. The indicated strains of C.
albicans were grown for 24 h and C. albicans RNA was extracted. The
relative transcript levels of Als3 were measured by real-time PCR.
Results are the mean 6SD of three biological replicates, each tested in
duplicate.
doi:10.1371/journal.pone.0016218.g006
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previous reports showing that Hyr1, but not Hwp1 is involved in

susceptibility to neutrophil killing [30,31]. More importantly, these

data, combined with the finding that the hyr1/hyr1 mutant was

highly susceptible to killing in an oral mucosal tissue model

(Fig. 8C), suggest that this gene is indirectly contributing to the

observed mucosal biofilm phenotype by conferring resistance to

neutrophil killing. Thus, this study now strongly implicates Hyr1 in

innate immune cell evasion of C. albicans in the oral mucosa.

Hyr1 is a GPI-anchored cell wall protein, expressed during

hyphal development [32] and repressed upon neutrophil encoun-

ter [30,33], however, relatively little is known about its exact role

in virulence. Because there is no severe biofilm defect on catheter

surfaces in the hyr1/hyr1 mutant [18], we hypothesized that this

mutant may have only a moderately attenuated biofilm phenotype

on the tongue surface. As expected, this mutant formed biofilms

covering part of the tongue surface, and overexpression of HYR1

in the bcr1/bcr1 background did not rescue the oral mucosal

biofilm phenotype (Fig. 9, 10A). However, we also anticipated that

due to increased susceptibility to neutrophil killing, preventing

deep tissue invasion [34], the tissue fungal burden in mice infected

with the hyr1/hyr1 mutant would be severely attenuated.

Consistent with this hypothesis, histological assessment showed

that, in contrast to the reference strain which reached the granular

Figure 7. Susceptibility of the bcr1/bcr1 mutant, reference
(DAY185) and reconstituted strains to leukocyte-inflicted
damage. Strains were exposed to HL-60 cells that had been
differentiated into neutrophil-like cells in vitro. HL-60 cells were added
to C. albicans for 3 h at effector to target cell ratios (E:T) ranging from
5:1 to 1:2. Results represent the mean 6 SD of three experiments, each
condition set up in triplicate.
doi:10.1371/journal.pone.0016218.g007

Figure 8. Susceptibility of the bcr1/bcr1 mutant, hyr1/hyr1 mutant, and HYR1- or HWP1- overexpressing strains in the bcr1/bcr1
background, to human leukocytes. Susceptibility was tested on 96 well plates (A,B) or on a three dimensional model of the human oral mucosa
(C). Strains were exposed to differentiated HL-60 cells (A,C) or freshly isolated neutrophils from one human donor (B) at an effector to target cell ratio
of 1:1 (A,B) or 10:1 (C). Results represent the mean 6 SD of three experiments, each condition set up in triplicate. *p,0.03 and **p,0.05 for a
comparison between the bcr1/bcr1 mutant and HYR1- overexpressing strain in the bcr1/bcr1 background.
doi:10.1371/journal.pone.0016218.g008
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and prickle epithelial cell layers, the hyr/hyr1 mutant was confined

within the keratin layer (Fig. 9 arrows). As a result, the tissue fungal

burden was severely attenuated in mice infected with the hyr1/hyr1

mutant (Fig. 10B). However, overexpression of HYR1 in the bcr1/

bcr1 background was not sufficient to reverse the tissue invasion or

fungal burden phenotype of the bcr1/bcr1 mutant (Fig. 9 arrows,

and 10B). This finding is consistent with the fact that, in addition

to neutrophil clearance, other virulence mechanisms directly

related to epithelial adhesion and invasion, as noted above, are

contributing to the severely attenuated phenotype of this mutant.

In conclusion, our studies provide valuable new insights which

promote the understanding of the pathogenesis of Candida

mucosal biofilm infections. We have shown that the transcription

factor Bcr1 is a critical regulator of oral mucosal biofilm formation

and identified two genes, HWP1 and HYR1, under Bcr1 control

that govern the inability of the bcr1/bcr1 strain to form robust oral

mucosal biofilms. Although much is known about the function of

Hwp1 and its role in oral mucosal infection, this is the first study

implicating Hyr1 in the pathogenesis of oral biofilm infection.

Methods

Ethics Statement
The study was approved by the University of Connecticut

Health Center Animal Care Committee (Protocol Number: 2009-

541) and the Human Subjects Protection Office (IRB Number:

02-288-2). Animals were monitored daily for distress. Given that

the oral cavity is readily accessible, lesions are detected relatively

early in their onset and animals are euthanized after lesion

formation before visible distress/behavior signs are observed. A

written informed consent was signed by all healthy human blood

donors.

C. albicans strains
The C. albicans deletion mutants and overexpressing strains

and their construction are described in detail elsewhere [11,18].

Strain DAY185 is a His+ reference strain used to construct the

His+ bcr1/bcr1 deletion mutant used in all experiments [18,35].

Strain DAY286 [36] was used as a reference strain for the hyr1/

hyr1 null mutant in some experiments. The two reference strains

were phenotypically similar in all experimental systems described

in this study. All strains exhibited similar growth characteristics

when grown overnight in epithelial cell media (not shown).

Mouse model of mucosal biofilm
Different strains were tested for their ability to form an oral

biofilm using our previously described mouse model [9]. Briefly,

6–8 week old female C57BL/6 mice were immunosuppressed by

subcutaneous injection with cortisone acetate (225 mg/kg, dis-

solved in 200 ml PBS containing 0.5% Tween-20) on days -1, 1

and 3 relative to infection. To deliver the C. albicans challenge

mice were anaesthetized by an intramuscular injection of ketamine

and xylazine (90–100 mg/kg and 10 mg/kg of body weight,

respectively) and a small cotton pad soaked with 100 ml of C.

albicans cell suspension (66108 cells/ml) was used to swab the

entire oral cavity. The swab was left for 2 h under the tongue and

was removed before the animals awoke. This procedure was

repeated 2 days later and mice were sacrificed after 5 days of total

exposure to C. albicans. During the infection period animals were

also given drinking water containing a daily-fresh suspension of

each strain (66106 yeast organisms/ml) to maintain high oral

carriage loads throughout the experimental period. Tongues were

removed aseptically at necropsy, photographed, and images were

saved as jpg files. Images were subsequently analyzed using the

NIH Image J software (http://rsb.info.nih.gov/ij) and data were

Figure 9. Biofilm formation and histological examination of the tongues of mice infected with DAY286 (reference), hyr1/hyr1
mutant and HYR-1 overexpressing strains in the bcr1/bcr1 background. Tongues of immunocomrpomised animals were excised after five
days of infection and the dorsal aspect was digitally photographed. Four mice were infected with each strain and representative clinical pictures are
shown from 1 mouse in each group on the left panel. On the right panel, representative PAS-stained thin sections of the tongue of one mouse per
group are shown. Arrows indicate microorganisms invading the spinous cell layer of the epithelium (strain DAY286) or remaining superficially within
biofilms (hyr1/hyr1 mutant and HYR1- overexpressing strains).
doi:10.1371/journal.pone.0016218.g009
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expressed as percent surface area covered by biofilm (total surface

area of white lesions/entire tongue dorsal surface area).

To determine the number of viable organisms in oral tissues, the

tongue was longitudinally dissected in three equal pieces and the

central portion was processed for colony forming unit (CFU)

quantification at the time of sacrifice. The tissue was weighed,

rinsed with phosphate buffered saline and then homogenized using

a tissue homogenizer. Serial dilutions were plated onto Sabouraud

dextrose agar plates containing 10 mg/ml chloramphenicol

(Sigma, USA) and plates were incubated at 30uC for 48 h. Results

were expressed as log CFU counts/g of tissue. One portion of the

longitudinally dissected tongues was fixed with 10% buffered

formalin and embedded in paraffin. Five mm thick sections were

prepared and stained with hematoxylin and eosin (H&E) and

Periodic Acid Schiff (PAS) stains.

Three-dimensional model of the oral mucosa
To investigate in vitro mucosal biofilm formation, tissue damage

by C. albicans and leukocyte-mediated fungal killing in an oral-like

environment we used a three-dimensional model of the oral

mucosa as previously described [37]. This system is composed of

3T3 fibroblasts embedded in a biomatrix of collagen type I,

overlaid by a multilayer of well-differentiated oral epithelial cells

(OKF6/TERT-1). C. albicans cells (16106 yeast cells) were added

to the cultures apically in 100 ml of airlift medium without FBS

and antibiotics. In some experiments, after 6–44 hours of co-

culture mucosal tissues were formalin-fixed, embedded in paraffin

and sections were stained with PAS. The extent of mucosal tissue

damage was quantified at different time points by measuring

extracellular leakage of LDH in the medium, using the cytotox-96

assay (Promega) as previously described [37]. Leukocyte-mediated

fungal cell damage was assessed in this model as described below.

Assessment of susceptibility to neutrophil killing
The susceptibility of the different strains to a neutrophil-like cell

line (HL-60 cells) or to human freshly isolated peripheral blood

neutrophils was determined by the XTT assay, as previously

described [29]. Briefly, HL-60 cells were cultured in RPMI 1640

medium containing 10% fetal bovine serum and 25 mM HEPES

and were induced to differentiate into neutrophil-like cells by

exposure to 1.25% of dimethyl sulfoxide for 7–9 days. Neutrophils

were isolated from anticoagulated blood of one healthy donor by

dextran T-500 (Sigma-Aldrich, St. Louis, MO) sedimentation

followed by Histopaque-1077 (Sigma-Aldrich) density gradient

centrifugation. Granulocyte-erythrocyte pellet was collected, and

erythrocytes were lysed by hypotonic shock. Neutrophils were

washed with HBSS without Ca, Mg (Mediatech, Inc., Herndon,

VA) and resuspended in RPMI1640 (Mediatech, Inc.) with

Figure 10. Biofilm surface area and fungal burden in animals infected with the bcr1/bcr1 mutant, hyr1/hyr1 mutant, HYR1-
overexpressing and reference strains. (A) Percent tongue surface area covered by biofilm. Results represent the average of 4 tongues in each
group. Image J was used to calculate the area covered by white plaques as well as the total surface area of each tongue. Error bars represent standard
deviations. *p = 0.015 for hyr1/hyr1 mutant versus reference strain; **p = 0.008 for hyr1/hyr1 mutant versus bcr1/bcr1TEF-HYR1 strain; ***p = 006 for
bcr1/bcr1TEF-HYR1 versus reference strain. (B) Tongue fungal burden. Results represent the average of four mice per group and error bars represent
standard deviations. *p = 0.000 for bcr1/bcr1TEF-HYR1 or hyr1/hyr1 compared to reference strain, **p = 0.23 for hyr1/hyr1 versus the bcr1/bcr1TEF-HYR1
strain.
doi:10.1371/journal.pone.0016218.g010
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10 mM HEPES (Gibco Invitrogen, Grand Island, NY). The

resulting cell preparations consisted of more than 95% of

neutrophils by Wright-Giemsa stain and were more than 98%

viable by trypan blue exclusion.

To perform Candida killing assays on plastic, overnight YPD

broth cultures of C. albicans were resuspended in DMEM 10%

fetal bovine serum and were added to 96 well plates (100 ml/well)

at concentrations ranging from 105 to 26104 cells/well. There was

a linear relationship between viable cell number and colorimetric

signal (XTT activity) in this concentration range with all strains

(not shown). Immune cells were added to C. albicans at effector to

target cell ratios (E:T) ranging from 5:1 to 1:2. To perform

Candida killing assays in an oral-like environment C. albicans cells

were grown as above and added apically to the three-dimensional

model of the oral mucosa (16105 yeast cells/tissue), in 50 ml of

airlift medium without FBS and antibiotics. After a 4 h incubation

period, differentiated HL-60 cells were added apically at an

effector to target ratio of 10:1 and incubated for 3 more hours.

After incubation of Candida with effectors at 37uC, 5% CO2 for

3 hours, media were aspirated and mammalian cells were lysed

with sterile H2O. 100 ml/well of XTT solution containing

Coenzyme Q0 (0.25 mg/ml XTT and 40 mg/ml coenzymeQ0)

was added to each well and plates were incubated at 37uC and

5%CO2 for 2 hrs. Supernatants were transferred into new plates,

and optical densities (OD) were measured by an Opsys Microplate

Reader (Thermo Labsystems, Franklin, MA) at 450–490 nm, with

a 630 nm reference filter. Antifungal activity was calculated

according to the following formula: %fungal damage = (12x/

n)*100, where x is the OD450 of experimental wells (C. albicans

with effectors) and n is the OD450 of control wells (C. albicans

only).

Real-time RT-PCR
To test expression of the Bcr1-regulated gene ALS3 in an oral

model of infection, we quantified expression by real-time RT-PCR

after 24 h growth on the 3D model of the human oral mucosa.

Briefly, media were aspirated and the collagen gel was transferred

to a centrifuge tube, followed by a brief centrifugation at 4uC.

Next, the transferred gel was dissolved in mammalian cell RNA

extraction buffer (4 M guanidine thiocyanate, 25 mM sodium

citrate, 0.5% Sarkosyl [N-lauroyl-sarcosine], and 0.1 M Beta-

mercaptoethanol), and repeatedly passed through a 20K gauge

needle [38]. The organisms were spun in a centrifuge at 14 0006g

at 4uC, and then snap-frozen in liquid nitrogen. Fungal RNA was

isolated using the RiboPure yeast kit (Ambion, Inc.), according to

the manufacturer’s instructions. RNA was reverse transcribed with

oligo(dT) primers using Superscript reverse transcriptase II

(Invitrogen).

Primers used for measurement of transcript levels were as

follows. We used the sequences described by Green et al. [39] for

measuring ALS3 RNA levels: ALS3 FOR: 59-CCACTTCA-

CAATCCCCATC-39, and ALS3 REV: 59-CAGCAGTAGTAG-

TAACAGTAGTAGTTTCATC-39. We used sequences de-

scribed by Blankenship et al. [40] for measuring control TDH3

RNA levels: TDH3 FOR: 59-AAATCGGTGGAGACAACAGC-

39, and TDH3 REV: 59-TGCTAAAGCCGTTGGTAAGG-39.

RT-PCR reaction conditions were as follows: 26 iQ SYBR

Green Supermix (Bio-Rad), 1 ml of first-strand cDNA reaction

mixture, and 0.1 mM of primers were mixed in a total volume of

50 ml per reaction. Real-time PCR was carried out in duplicate for

each sample using the iCycler iQ real-time PCR detection system

(Bio-Rad). The program for amplification included an initial

denaturation step at 95uC for 5 min, followed by 40 cycles of 95uC
for 45 s and 58uC for 30 s. Product amplification was detected

using SYBR Green fluorescence during the 58uC step. The

reaction specificity was monitored by melt-curve analysis. TDH3

was used as a reference gene for normalization of gene expression,

which was done using Bio-Rad iQ5 software (DDCT method).

Author Contributions

Conceived and designed the experiments: ADB APM. Performed the

experiments: PD AT HK ZX SG. Analyzed the data: PD AT HK SG.

Contributed reagents/materials/analysis tools: APM. Wrote the paper:

ADB.

References

1. Brent N (2001) Thrush in the breastfeeding dyad: results of a survey on diagnosis

and treatment. Clin Pediatr 40: 503–506.

2. Fonseca R, Cardoso AS, Pomarico I (2000) Frequency of oral manifestations in

children infected with human immunodeficiency virus. Quintessence Int 31:

419–422.

3. Nicolatou-Galitis O, Dardoufas K, Markoulatos PL, Sotiropoulou-Lontou A,

Kyprianou K, et al. (2001) Oral pseudomembranous candidiasis, herpes simplex
virus-1 infection, and oral mucositis in head and neck cancer patients receiving

radiotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF)
mouthwash. J Oral Pathol Med 30: 471–480.

4. Passalacqua G, Albano J, Canonica GW, Bachert C, Van Cauwenberge P, et al.
(2000) Inhaled and nasal corticosteroids: safety aspects. Allergy 55: 16–33.

5. Deconinck S, Boeke AJP, van der Waal I, van der Windt DAWM (2003)
Incidence and management of oral conditions in general practice. Brit J Gen

Pract 53: 130–132.

6. Holmstrup P, Axell T (1990) Classification and clinical manifestations of oral

yeast infections. Acta Odontol Scand 48: 57–59.

7. Coogan M, Fidel PL, Komesu MC, Maeda N, Samaranayake LP (2006)

Candida and mycotic infections. Adv Dent Res 19: 130–138.

8. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP (2003) Biofilm-

forming ability of Candida albicans is unlikely to contribute to high levels of oral
yeast carriage in cases of human immunodeficiency virus infection. J Clin

Microbiol 41: 2961–2967.

9. Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz PI, Vasilakos JP (2009)

Characterization of Mucosal biofilms by C. albicans. PLoS One 24 4: e7967.

10. Kumamoto C (2005) A contact-activated kinase signals Candida albicans

invasive growth and biofilm development. PNAS 102: 5576–5581.

11. Nobile C, Mitchell AP (2005) Regulation of cell-surface genes and biofilm

formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:

1150–1155.

12. Ramage G, VandeWalle K, Lopez-Ribot JL, Wickes BL (2002) The

filamentation pathway controlled by the Efg1 regulator protein is required for

normal biofilm formation and developmentj in Candida albicans. FEMS

Microbiol Lett 214: 95–100.

13. Richard M, Nobile CJ, Bruno VM, Mitchell AP (2005) Candida albicans

Biofilm-Defective Mutants. Eukaryotic Cell 4: 1493–1502.

14. Thomas D, Bachmann SP, Lopez-Ribot JL (2006) Proteomics for the analysis of

the Candida albicans biofilm lifestyle. Proteomics 6: 1–10.

15. Zhao X, Daniels KJ, Oh S-H, Green CB, Yeater KM, et al. (2006) Candida

albicans Als3p is required for wild-type biofilm formation on silicone elastomer

surfaces. Microbiology 152: 2287–2299.

16. Harriott M, Lilly EA, Rodriguez TE, Fidel PL, Jr., Noverr MC (2010) Candida

albicans forms biofilms on the vaginal mucosa. Microbiology 156: 3635–
3644.

17. Nett J, Marchillo K, Spiegel CA, Andes DR (2010) Development and validation
of an in vivo Candida albicans biofilm denture model. Infect Immun 78:

3650–3659.

18. Nobile C, Andes DR, Nett JE, Smith FJ, Yue F, et al. (2006a) Critical role of

Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo.
PLoS Pathog 2: e63.

19. Phan Q, Myers CL, Fu Y, Sheppard DC, Yeaman MR, et al. (2007) Als3 is a
Candida albicans invasin that binds to cadherins and induces endocytosis by host

cells. PLoS Biol 53: e64.

20. Staab J, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian

transglutaminase substrate properties of Candida albicans Hwp1. Science 283:
1535–1538.

21. Villar C, Kashleva H, Dongari-Bagtzoglou A (2004) Role of C. albicans
Polymorphism in Interactions with Oral Epithelial Cells. Oral Microbiol

Immunol 19: 262–269.

22. Nobile C, Nett JE, Andes DR, Mitchell AP (2006b) Function of Candida

albicans adhesion Hwp1 in biofilm formation. Eukaryot Cell 5: 1604–1610.

23. Cheng S, Clancy CJ, Checkley MA, Handfield M, Hillman JD, et al. (2003)

Identification of Candida albicans genes induced during thrush offers insight into

pathogenesis. Mol Microbiol 48: 1275–1288.

Role of Bcr1-Regulated Genes in Mucosal Biofilms

PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | e16218



24. Sundstrom P, Balish E, Allen CM (2002) Essential role of the Candida albicans

transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal
candidiasis in immunodeficient mice. J Infect Dis 185: 521–530.

25. Zhao X, Oh S-H, Cheng G, Green CB, Nuessen JA, et al. (2004) ALS3 and

ALS8 represent a single locus that encodes a Candida albicans adhesin;
functional comparisons between Als3p and Als1p. Microbiology 150:

2415–2428.
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