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Abstract

Members of social network platforms often choose to reveal private information, and thus sacrifice some of their privacy, in
exchange for the manifold opportunities and amenities offered by such platforms. In this article, we show that the
seemingly innocuous combination of knowledge of confirmed contacts between members on the one hand and their email
contacts to non-members on the other hand provides enough information to deduce a substantial proportion of
relationships between non-members. Using machine learning we achieve an area under the (receiver operating
characteristic) curve (AUC) of at least 0:85 for predicting whether two non-members known by the same member are
connected or not, even for conservative estimates of the overall proportion of members, and the proportion of members
disclosing their contacts.
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Introduction

Some individuals prefer to keep intimate details such as their

political preferences or sexual orientation private. Recent results

suggest that such details can nonetheless be inferred with high

probability if a sufficient number of confirmed contacts in a social

network chooses to reveal their details [1–4]. As a consequence,

some of the more circumspect choose to stay away from social

network platforms such as Facebook in the belief that this will help

protect their privacy. In this article, we show that such an

assumption is no longer valid: with the help of machine learning,

social network operators can make predictions regarding the

acquaintance or lack thereof between two non-members with a

high rate of success. To our knowledge these are the first results on

the potential of social network platforms to infer relationships

between non-members.

Inference of undisclosed, unobserved, or future contacts (the

‘‘edges’’) between people or agents (the ‘‘nodes’’) is known as the

‘‘link prediction’’ problem [5–7]. It is a difficult problem mainly

because the imbalance between possible and realized future edges

is extremely high in most cases [8,9]. In contrast, the prediction of

some properties of given links, e.g. the sign of the weight on a link

[10] is simpler because the problem is typically more balanced.

Link prediction was mostly approached with unsupervised [11]

and recently also with supervised learning methods [12–14].

Inference was done both using solely structural measures based on

the network topology [15,16] but also by additionally taking into

account the nodes’ attributes [17–19]. The most common setting

of the link prediction problem is, given an evolving network at an

early stage, to predict newly acquired edges at a later stage. The

success of link prediction has usually been estimated by cross-

validation within the same network [20,21]. This typically implies

a dependence between training and test data and, hence, an overly

optimistic estimate of the accuracy of an algorithm. To our

knowledge, we present the first link prediction work where

learning and testing are performed on entirely independent

networks.

Methods

The Problem
All members of society can be seen as nodes in an unobservable

social graph. This latent social graph is dynamic and extremely

complex, with edges of widely differing quality (two people may be

kindred, or engaged, or work together, they may like or dislike

each other, etc.). From the point of view of a social network

platform like Facebook, the set of all people can be divided into a

fraction 0ƒrƒ1 of members and 1{r of non-members. The

multi-faceted relationships between people are much simplified, in

an extreme case into mere binary form: two members may declare

a ‘‘friendship’’ which is then represented by an edge in the set EI .

In reality, social networks typically have access to more

information that allows to estimate the quality of an edge (its

strength, its asymmetry, etc.) especially if they integrate a

messaging service. Additionally, a fraction 0ƒaƒ1 of all platform

members may also share their contacts to non-members, e.g., by

uploading their email address book (Figure 1). Social network

platforms then have direct access to two different sets of

relationships: on the one hand, the mutually confirmed contacts

between platform members (EI ); and on the other hand, their

members’ unilateral declarations of their acquaintance with non-

members (EB). The edges in both EI and EB are an abstraction

and a subset of the edges in the latent social graph. The central
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question of this article is to what extent the acquaintance of two

people who are both non-members can be predicted.

For the very reason that the latent social graph is fundamentally

unobservable, both we and a social network operator with similar

aims as described here needs to impute the missing information to

admit a machine learning procedure. The approach we choose is

to use the observed part of a social network – say, the Facebook

network of all students at a given university – and presume it

represents the complete (and unobservable) social graph of a

hypothetical community. In other words, the edges in this social

graph are considered the ground truth. We then proceed to

partition this community into a set of members and non-members

by a number of member recruitment models outlined below which

represent a broad range of potential strategies by which people

choose to become members. Finally, we predict the existence or

otherwise of an edge between any two non-members and evaluate

the accuracy of these predictions with respect to the ground truth.

Ground Truth Imputation
In line with what would be available to a social network

operator, we use real social networks, in this case real-world

Facebook friendship networks representing the students from five

different US universities [22]. Figure 2 shows a comparison of

their number n of members, their average degree (the average

number of friends a member has), their density 2m=(n(n{1))
where m is the number of friends, and their average clustering

coefficient (the average probability that two friends of a member

are friends themselves [23]).

The ground truth imputation comprises three steps. In the

first step the platform penetration percentage r is modeled. The

percentage of members in a given population varies strongly

with the type of social network platform and the social

community of interest. According to Facebook, it had more

than 800 million active users in November 2011 [24], while the

number of internet users worldwide is estimated at over

2 billion [25]. Thus, roughly 40% of all internet users are

active Facebook members. Around 25% of all Facebook users

are US citizens. Assuming that each Facebook account

represents one individual, we can estimate that over 70% of

all North American internet users are members of Facebook.

For certain social strata the percentage of Facebook users is

known exactly: one study showed that already back in 2005

over 60% of the undergraduates of the Carnegie Mellon

University were members of the platform [26]. Later, in 2009

around 80% of all interviewed students of the University of

Illinois of Chicago [27] and 85% of a polled contemporary

Canadian sample [28] were Facebook members. The platform

penetration parameter 0ƒrƒ1 thus reflects different member-

ship densities and allows to model different social network

platforms and their acceptance in different communities.

Given a real Facebook friendship network and a choice of r, the

second step of the ground truth imputation is to partition the

nodes of the network into members and non-members. For this we

need models for how people choose to become members of a

platform which we call member recruitment models. An analysis of the

evolution of online social networks [29] suggests that a network

platform recruits its members through a mixture of online

mediated invitations by friends who already are members, and

independent decisions by individuals who are not yet friends of a

member. Since the actual member recruitment process is

unknown and probably also depends on the group of people that

is considered (e.g. college students vs. employees), we have

emulated the growth of social network platforms using processes

ranging from strongly dependent to purely independent decisions.

All models start with labeling a node chosen uniformly at random

as the first member. Strongly dependent decisions are modeled by

processes in which only people who know at least one member will

join the network. In a breadth first search (BFS) model all friends

of the first member are labeled as members after which all their

friends are labeled and so on. In a depth first search (DFS) model a

randomly chosen friend of the first member joins the platform

after which a randomly chosen friend of the new member joins

and so on recursively. Less dependent decisions are modeled by a

random walk (RW) which is restarted from a new node as soon as

a friend of a new member is chosen which is already a member.

The ego networks selection (EN) model joins the independent

decision of some randomly chosen seed members with the

dependent decision of their direct friends. Purely random selection

of members (RS) is based entirely on independent decisions

modeled by the random selection of a set of members. These

member recruitment models are described in more detail in Text

S1. For an analysis of the structural properties of the partitions

obtained with different member recruitment models see Figures

S1, S2, and S3. Figure 3 shows the resulting partitions of a toy

graph under all five models. We show below that our main

findings are robust with respect to the specific choice of the

member recruitment model.

Figure 1. Definitions and examples. Any social network platform
divides society into two sets: the set of members M (black nodes) and
of non-members M . In our toy example 30 of 100 individuals, i.e. a
fraction of r~0:3, are members. The relevant subset MR of non-
members (red nodes) that are in contact with at least one member is
distinguished from other non-members (gray nodes). 15 of the 30
members, i.e., a fraction of a~0:5, have disclosed their outside social
contacts. The knowledge of the set of edges EI between members
(black, bi-directed) and the set of edges EB (green) to non-members is
enough to infer a substantial fraction of edges between non-members
(red edges).
doi:10.1371/journal.pone.0034740.g001

One Plus One Makes Three (for Social Networks)
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In the third step, a so-called disclosure parameter 0ƒaƒ1 is

chosen to model the probability with which a member opens

her email address book to the platform, e.g. through revealing

her email contacts. We consider that a member who revealed

her email contact list shared thereby all of her contacts justified

by the feature of the platform allowing for easy automatic

uploading of the entire email address book. a governs the

fraction of connections between the member and non-member

sets. As such, it is a key ingredient of the ground truth

imputation.

Figure 2. Comparison of basic network analytic statistics of the five data sets obtained from Traud et al. [22].
doi:10.1371/journal.pone.0034740.g002

Figure 3. Membership propagation in a toy example according to different propagation models. Note that real social networks exhibit
more long-range edges. Examples for the platform penetration value r~0:2 show the nodes from which the propagation started (black nodes with
white core). Other members are marked black and relevant non-members red; for ease of reading arrows are not displayed, but black edges are
bidirectional while green edges point from black to red nodes. With BFS and DFS the network is explored starting from one node (denoted by a white
circle); with RW and EN there are more nodes from which the propagation is launched; and finally, for RS all selected nodes can be seen as starting
nodes.
doi:10.1371/journal.pone.0034740.g003

One Plus One Makes Three (for Social Networks)
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Given an underlying graph G~(V ,E) with nodes V and edges

E, the simulated member recruitment model results in a subset of

nodes M5V that are considered members, and a set of non-

members M~V \M. We will only focus on the set

MR5M~ y[Mj(xy)[EB, x[M
� �

of relevant non-members whose

email address has been disclosed by at least one member (see

Figure 1). These node sets induce the edge sets EI and EB as defined

above, and additionally the edges between non-members, which are

not directly accessible to the platform, and are at the core of our

interest and prediction efforts. Let G’~(M|MR,EI|EB) denote

the new graph containing all the structural information that is

assumed to be known by a given social network platform (black and

red nodes, and black and green edges in Figure 1).

The ground truth imputation is thus determined by the choice

of the percentage of individuals r deciding to become members of

the social network, the member recruitment model (BFS, DFS,

RW, EN, RS), and the choice of a, the propensity of members to

disclose their contacts with non-members.

Feature Extraction
To predict whether two non-members v,w are connected, we

compute 15 topological graph features of the network around v
and w in G’ on which the prediction is based. We deduce the

features from relational knowledge because the data at hand is

anonymized and therefore no node attributes are available. The

exact choice of features is rooted in the known structural

properties of (online) social networks [30,31]. The intuition that

two people sharing common friends are likely to be friends

themselves motivates including a feature that counts the absolute

number of common neighbors v and w have. However, the

absolute number of common neighbors might be misleading if v
has just a few neighbors, while w has many. Thus, we add three

normalized versions of the number of common neighbors where

the normalization is done by the smaller degree, the larger degree

and the number of nodes which are neighboring at least one of the

two nodes (the so-called Jaccard coefficient). The typically high

assortativity (measuring the likelihood for nodes to connect to

other nodes with similar degrees [32]) and the significant local

clustering [33] of nodes in online social networks justifies focusing

on the average degree and the clustering coefficient of the

common neighbours of v and w. The community structure of

social networks [34] leads us to construct several features that

reflect the interconnectedness of the member side neighbors of the

two nodes as illustrated by Figure 4. Finally, we count the absolute

number of distinct paths between v and w in G’ with exactly three

edges. For a precise description of the features see Text S2.

For each pair of non-members these scalars are stored in a 15
dimensional feature vector. A feature vector relating to two

connected non-members is called a positive sample, and one

describing unconnected non-members is a negative sample. Based

on this vector, supervised machine learning is used to predict

which pairs of non-members are connected (acquainted) and

which ones are not.

The Prediction Algorithm
Supervised learning requires a training set on which the

classifier’s parameters are adjusted. Its performance is then

evaluated on an independent test set. We restrict our predictions

to those pairs of non-members with at least one common neighbor

among the members. In this respect we follow similar approaches

which restricted link predictions to pairs of nodes with a maximum

distance of two [9,12]. Our focus is thus on predicting whether two

non-member friends of a member are friends themselves, i.e.

whether a pair of non-members is contained as an edge or not. We

employ the random forest classifier [35], an ensemble of decision

trees that has previously been used for link prediction in dynamic

networks [9,11,12]. For a more detailed description see Text S3.

Once the random forest has been trained it can be applied to

the test set, and edges with a probability higher than some

threshold are predicted to exist. This prediction can then be

compared to the ground truth.

Accuracy Measures for Prediction
A good classification result is characterized by a high sensitivity

(probability of predicting an edge that truly exists) and high

specificity (probability of predicting the absence of an edge that

truly doesn’t exist). In the following we use two classic accuracy

measures for the link prediction problem, the AUC and the PPVk

which combine sensitivity and specificity [13,36]: Varying the

threshold allows to trade-off sensitivity vs. specificity. The receiver

operating characteristic (ROC curve) shows the sensitivity against

1{specificity plot. The area under this curve (AUC) is a scalar

performance measure that aggregates the prediction accuracy over

all possible settings of this threshold. A perfect predictor achieves

Figure 4. Features based on different edge sets between the
exclusive, joint, and common neighborhoods of v and w. All left-
hand nodes belong to the joint neighborhood of v and w. a is exclusive
to v, while e,f are exclusive to w, and b,c,d are common neighbors of
both. Our features comprise the absolute number of edges between
common neighbors (black, dashed edges), exclusive neighbors (black,
straight edge), joint neighborhood (all black edges between nodes
a,b,c,d,e), and an exclusive and a common neighbor (black, dotted
edges). For each of them we also added their normalized value.
Normalization was done by the number of possible edges between the
neighbors they have.
doi:10.1371/journal.pone.0034740.g004

One Plus One Makes Three (for Social Networks)
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an AUC of 1 while random guessing in a two-class problem yields

a value of 0:5.

While the AUC measures the accuracy over the full range of

possible thresholds, the PPVk is based on a specific threshold: let k
denote the number of positive samples in the test set, i.e., the non-

member pairs connected by an edge, and let all samples of the test

set, i.e., all non-member pairs having at least one common

member friend, be ordered non-increasingly by their prediction

value. The PPVk introduced by [11] is defined as the percentage

of correctly classified positive samples among the first k samples in

the ranking, and is thus also equal to the sensitivity achieved by

predicting these k samples to be edges. It can be shown that the

specificity is linearly dependent on PPVk and thus both measures

are captured by it. The higher the value the more the number of

positive samples is enriched among the k highest-ranked samples.

Note that the PPVk should always be at least as large as the

overall fraction of positive edges among all edges. Otherwise, the

prediction algorithm performs worse than a naive algorithm in

which k samples are drawn uniformly at random from all samples

and predicted to be edges.

Training Schemes
All prior work on link prediction with high imbalance between

possible and realized future edges that we are aware of uses cross-

validation where training and testing are achieved within a single

network. In reality, however, one would want an approach that

can be trained once and then allows to predict edges in

independent networks (cross-prediction). In general, cross-valida-

tion within a single network tends to be overly optimistic in its

results since training and test samples may be dependent. It is thus

more meaningful to test the cross-prediction performance of a

prediction algorithm. Accordingly, we have devised the following

training scheme (see Text S3):

1. cross-prediction 4?1: The classifier was trained on

subsets of the samples from four of the five data sets and the test set

consisted of all samples from the fifth data set. This is an instance

of cross-validation across networks, rather than within a network.

To stress this difference, we use the term cross-prediction in the

following. To be able to compare classification results obtained on

different data sets and for varying parameters r and a, we

subsampled the available training data in the following way: First,

1200 positive samples and (1=g{1):1200 negative samples were

selected at random. Here, g denotes the fraction of positive

samples among all samples. To obtain balanced training sets when

constructing individual trees of the random forest, we then

randomly selected 1200 samples from both classes from the

reduced set. We applied this procedure to each of the four training

data sets to obtain a total of 4800 positive samples and the

corresponding number of negative samples. Since especially the

Caltech data set did not always provide enough samples, we

oversampled the available data whenever necessary (that is by

sampling with replacement). Each tree was trained with a

balanced data set of 4800 samples from both classes.

2. cross-prediction 1?1: For each pair of data sets, the

classifier was trained on one and evaluated on the other. The same

sampling scheme was used as above and the trees were trained

with 1200 samples per class.

The 4?1 training scheme is less prone to overfitting by training

on four different networks, while the 1?1 scheme was used to find

out whether a single known network contains enough information

to obtain high-quality predictions.

Results

For all member recruitment models, the ratio between the

number of positive and negative samples is very small and lies

between 0:0002 and 0:03 for four out of five of the university

networks. This imbalance of the two classes is in the typical range

of imbalances for various link prediction problems [9,11,36,37]

and seems to determine the hardness of the problem.

As argued above, the prediction accuracy of an intra-network

cross-validation should upper-bound the prediction accuracy of an

inter-network cross-prediction approach. Thus, as a base line,

Figure 5 visualizes the prediction accuracy as measured by the

AUC, using different member recruitment models in conjunction

with cross-validation on the UNC data set. The general pattern is

that the prediction accuracy increases with r and a. In other

words, the greater the percentage of members and the higher their

propensity to share their email contacts, the easier it is to predict

the network between non-members. One exception to this pattern

is the BFS model whose prediction accuracy shows a maximum for

r*0:5. The behavior of the AUC and the PPVk are very

consistent over all member recruitment models for all university

data sets, implying that the exact model of the member

recruitment model is not crucial (see Figures S4 and S5).

The 4?1 cross-prediction training scheme results in AUC
values of at least 0:85 for all combinations with r§0:5 and a§0:4
in the case of UNC, Princeton, Georgetown and Oklahoma, for all

but the BFS member recruitment model. Similarly, the PPVk is at

least 0:4 for the same range of r and a, on UNC, Georgetown and

Oklahoma, and for all but the BFS and the DFS member

recruitment models. That means, if for each data point we select

the k samples with the highest prediction values, at least 40% of

them indeed represent two non-members that know each other.

Figure 6 shows for each combination of r and a and all five data

sets the minimal (lower triangle) and maximal (upper triangle)

Figure 5. Prediction accuracy (AUC) of samples based on all member recruitment models in the cross-validation training scheme
applied to UNC data. The white square denotes a data point where there was not enough data to make the prediction.
doi:10.1371/journal.pone.0034740.g005

One Plus One Makes Three (for Social Networks)
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AUC and PPVk value over all member recruitment models. For

the complete results refer to Figures S6 and S7. It can clearly be

seen again that the differences depending on the member

recruitment model are small in most cases. The one part where

the difference is most pronounced is for r§0:6 for Georgetown

and Princeton, where the BFS member recruitment model results

in notably worse predictions than the other member recruitment

models.

The 4?1 setting is more robust against overfitting since it learns

from four independent networks. To see if one can reliably predict

with even fewer training data, we also evaluated in the 1?1 setting

how good the predictions remain if the random forest is trained on

only one network at r~a~0:5. For the case of Facebook in

particular, the estimates of r and a appear conservative, because of

the pervasiveness that this platform has achieved, and the

simplicity with which members can upload their full email address

book. At the time of writing, Facebook still asks novice members,

upon the creation of their account, to supply the password of their

email provider to parse all their email contacts. The choice of

a~0:5 is supported by an informal survey among 100 members of

Facebook. Additionally, for the particular case of Facebook, the

number of members whose email contacts are known can be

expected to further grow with the integrated email service that has

recently been introduced. Figure 7 shows the prediction accuracy

in the 1?1 training scheme. On the diagonal, the cross-validation

value is plotted as a reference and it can be seen that the AUC

values in this cross-prediction training scheme are around the

same value as those of the cross-validation within the same

network. It can also be seen that some data sets are easy to predict,

namely Oklahoma and UNC, while Caltech is hard to predict

based on any of the four other data sets. Furthermore, if the

classifier is trained on Caltech data, the predictions are consistently

the worst among all cross-predictions. Based on the network

statistics shown in Figure 2, it can be seen that UNC and

Oklahoma are the two largest networks while Caltech is the

smallest, with around half the average degree of the other four

networks. At the same time, its clustering coefficient is almost twice

as large as that of the others. Thus, the prediction accuracy as

measured by AUC is almost as good in 1?1-cross prediction as in

within-network cross-validation, provided the network used for

training is structurally not too different from the one to be

predicted.

In summary, we achieve an AUC§0:85 and a PPVk of more

than 40% in a cross-prediction training scheme for realistic

parameter values of r§0:5 and a§0:4. The high AUC value

implies that the prediction is considerably better than random

guessing. The PPVkw0:4 means that, if there is an estimate on

the number k of edges to expect between all pairs of non-members

Figure 6. 4 R 1 cross-prediction accuracy. Minimal (lower triangle) and maximal (upper triangle) prediction accuracy for all five member
recruitment models are shown as a function of platform penetration r and the disclosure parameter a. Upper row: AUC; lower row: PPVk ; black
triangles denote data points where PPVk was smaller than the according fraction of positive samples among all samples.
doi:10.1371/journal.pone.0034740.g006

Figure 7. 1 R 1 cross-prediction accuracy. AUC values for each of the five member recruitment models at r~a~0:5. The y and x-axis show on
which network the random forest was trained and tested, respectively. The white field indicates that there were too few edge samples to reasonably
train the classifier.
doi:10.1371/journal.pone.0034740.g007

One Plus One Makes Three (for Social Networks)
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that share a member friend, then 40% of the predicted edges are

indeed edges and of these edges between non-members 40% are

predicted. Note that the restriction to predicting only connections

between non-members sharing a member friend leaves us with at

least 75% of all befriended non-members (in almost all cases this

percentage is above 85%, Table S1).

One final remark concerns the variability of prediction accuracy

among the member recruitment models. We found that the

prediction accuracy is rather independent of how individuals

decide to become a member of an online social network platform,

but that some percentage of independent decisions like in the RW ,

EN , and RS model helps the platform to explore the latent social

network more efficiently.

Discussion

The above results give us a good indication of how accurately

one can predict links between non-members of a social network

platform, based only on information extracted from the friendship

and email contact information of their members. Additionally, the

quite high prediction accuracy achieved in inter-network cross-

prediction as compared with intra-network cross-validation is

astonishing. As always, machine learning can only work if the

training data is representative of the observations for which

predictions are required in the future. This expectation is borne

out by our experiments which show that cross-prediction works

best if training and test set are similar in terms of basic network

statistics.

Note that we used purely topological or structural indicators,

i.e., we only exploited the presence or absence of edges in the

computation of features for prediction. Social network platform

operators, however, typically have access to much more detailed

information on nodes such as the age, sex and (approximate)

location of their members; and if they provide messaging services

they can infer the quality of an acquaintance from its

communication pattern. Including such information into the

features will likely improve prediction accuracy.

The ground truth imputation on which the results are based

relies on three important modeling decisions which need to be

discussed. First, we imply that non-members are similar to

members in terms of the revealed network characteristics. Two

studies from 2006 and 2009 indicate that there are indeed

statistically significant differences between members and non-

members among university students: these differences concern age,

ethnicity, and gender, but not important social factors such as life

satisfaction, social trust, or privacy concerns [38,39]. Although the

sociability of members and non-members was not directly assessed,

these studies give no indication that members and non-member

differ significantly in the structure of their contact networks.

Second, since the contact network between members and non-

members of no social network platform is available, we take the

known Facebook friendship network as a proxy for the structure of

the email contact network between members and non-members.

This is justified by the fact that both belong to the large set of

social networks with scale-free degree distribution, high clustering

coefficient, small-world behavior, and a positive assortativity

[31,40,41]. Third, we only take into account pure member

recruitment models which might not be realistic apiece. The

surprising result that the choice of member recruitment models

does not alter the main conclusions shows that the analysis of the

pure models does not constrain the approach. Even for BFS,

which makes good predictions hardest, good results are obtained.

This implies that however individuals decide to join an online

social network, the unilateral declaration by members of their

contacts with non-members allows social network platforms to

gain substantial insight into the relationships of non-members.

This increase in coverage thanks to link prediction will be most

successful if the individual members’ decisions to join the network

exhibit some independence - a knowledge that could be exploited

by the platform when elaborating new recruitment strategies.

Altogether, our results indicate that knowledge of the social

network between members of a platform along with part of the

contacts to non-members is sufficient to infer a substantial part of

the network between non-members. This perhaps surprising

finding has been afforded by leveraging relational information

provided by members in a unilateral, non-consensual manner.

Ultimately, it evokes the question of the ownership and

exploitation of relational data in the information age.

Supporting Information

Figure S1 Some structural properties of the networks
resulting from applying different member recruitment
models on the Oklahoma data set in dependence of r for a
= 1.
(EPS)

Figure S2 The coverage of all member recruitment
models in dependence of r for the networks of the five
universities. For all member recruitment models and all data,

a~0:5, i.e., half of the members have shared their email contacts.

(EPS)

Figure S3 The coverage of all member recruitment
models in dependence of a for the networks of the five
universities. For all member recruitment models and all data,

r~0:5, i.e., half of the nodes are selected members.

(EPS)

Figure S4 Shown are the AUC values for all r 2 a
combinations in all five data sets. The random forest was

trained on 90% of the samples within the same data set and tested

on the remaining 10% (9/10-cross validation). The procedure was

repeated 10 times with randomly chosen training sets, and the

values of all runs were averaged. White squares denote data points

where there were not enough edge samples to do the learning.

(EPS)

Figure S5 Shown are the PPVk values for all r 2 a
combinations in all five data sets. The random forest was

trained on 90% of the samples within the same data set and tested

on the remaining 10% (9/10-cross validation). The procedure was

repeated 10 times with randomly chosen training sets, and the

values of all runs were averaged. White squares denote data points

where there were not enough edge samples to do the learning;

black squares denote data points where PPVk was smaller than

the according fraction of positive samples among all samples.

(EPS)

Figure S6 Shown are the AUC values for all r 2 a
combinations in all five data sets. To predict samples from

any of the data sets, the random forest was trained on 1200
samples each of the other four data sets (4?1 prediction). White

squares denote data points where there were not enough edge

samples to do the learning.

(EPS)

Figure S7 Shown are the PPVk values for all r 2 a
combinations in all five data sets. To predict samples from

any of the data sets, the random forest was trained on 1200

samples each of the other four data sets (4?1 prediction). White

squares denote data points where there were not enough edge
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samples to do the learning; black squares denote data points where

PPVk was smaller than the according fraction of positive samples

among all samples.

(EPS)

Table S1 Percentage of edges between two non-mem-
bers that commonly know at least one member of all
edges between two non-members. Shown is the average of

ten runs for r~0:5 and a~0:5:
(PDF)

Text S1 Details about the experimental setting.
(PDF)

Text S2 Details regarding feature extraction.

(PDF)

Text S3 More information on the learning procedure
with random forests.

(PDF)
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