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Abstract

Smoke from bushfires is an emerging issue for fire managers because of increasing evidence for its public health effects.
Development of forecasting models to predict future pollution levels based on the relationship between bushfire activity
and current pollution levels would be a useful management tool. As a first step, we use daily thermal anomalies detected by
the MODIS Active Fire Product (referred to as ‘‘hotspots’’), pollution concentrations, and meteorological data for the years
2002 to 2008, to examine the statistical relationship between fire activity in the landscapes and pollution levels around
Perth and Sydney, two large Australian cities. Resultant models were statistically significant, but differed in their goodness of
fit and the distance at which the strength of the relationship was strongest. For Sydney, a univariate model for hotspot
activity within 100 km explained 24% of variation in pollution levels, and the best model including atmospheric variables
explained 56% of variation. For Perth, the best radius was 400 km, explaining only 7% of variation, while the model
including atmospheric variables explained 31% of the variation. Pollution was higher when the atmosphere was more stable
and in the presence of on-shore winds, whereas there was no effect of wind blowing from the fires toward the pollution
monitors. Our analysis shows there is a good prospect for developing region-specific forecasting tools combining hotspot
fire activity with meteorological data.
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Introduction

An increasingly important issue of fire management revolves

around the health impacts of smoke pollution. Smoke is a complex

mixture of particulate and gaseous pollutants [1] that has been

associated with a wide range of adverse health outcomes [2].

Smoke from bushfires can travel vast distances to affect towns and

cities far from its original source [3,4]. Bushfire smoke has been

clearly associated with exacerbation of respiratory illnesses,

increased respiratory hospital admissions, and visits to emergency

departments [5]. The effect of bushfire smoke on other health

outcomes such as cardiovascular morbidity and mortality has been

less extensively researched. Of six studies into smoke-related

particulate-matter mortality, three found an association [6,7,8],

while associations with cardiovascular disease have rarely been

reported [2]. However, the weight of evidence suggests that smoke

particles elicit toxicological effects similar to those of particles from

urban pollution (eg motor vehicle emmissions) [9,10,11], and the

association between urban particles and respiratory and cardio-

vascular morbidity and mortality is well established [12].

Fire managers are required to make many decisions based on

assessments of risks related to many variables (ecological, property,

human safety and health), and each decision may impact other

management variables. One of the greatest trade-offs is the use of

prescribed burning to limit the extent and intensity of uncontrolled

wildfires. For example, the 2009 Victorian Bushfire Royal

Commission recommends increasing the level of burning of public

bush land from 1% per year currently to 5% [13]. Most recent

wildfire enquiries in Australia have made similar recommenda-

tions [14,15]. In the USA, there is mounting pressure to increase

prescribed burning rates to counter the increasing area burnt by

wildland fires [16,17,18]. Recent evidence suggests that such

increases to prescribed fire will actually increase the total area

burnt, because several hectares of prescribed fire are required for

each hectare of wildfire area reduction [19,20]. Such a marked

increase in prescribed burning may have adverse impacts on

urban airsheds, counteracting the fact that prescribed fires have

less extensive smoke plumes than wildfires [21].

Resolving this management trade-off associated with prescribed

burning requires understanding of the risks associated with smoke

pollution, and tools for reliably predicting where smoke is likely to

travel. With appropriate warning, susceptible people can minimize

their exposure by taking appropriate precautions. In addition,

managers could use predictive models to decide whether or not the

atmospheric conditions suit a prescribed fire, because they have

a legal responsibility to avoid causing exceedances of the
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Australian air quality standards for particulate matter. The

regulatory standard for PM10 (particulate matter ,10 mm in

aerodynamic diameter, in mg/m3) is currently 50 mg/m3 while the

advisory reporting standard for PM2.5 (particulate matter

,2.5 mm in diameter, in mg/m3) is 25 mg/m3 [22]. The standards

for ambient air pollution are currently being reviewed and it is

possible that the PM2.5 standard will be upgraded from an

advisory to a regulatory standard. As PM2.5 is the major

component of particular matter in bushfire smoke, prescribed

and wild fires could become an important cause of failure to

achieve the regulatory standards [23].

Most methods for tracking smoke from bushfires are based on

atmospheric dispersion modelling, which is extremely data and

resource intensive. At present, such models are routinely used for

smoke pollution forecasting in North America [24], but not in

Australia [25]. Evaluation of these models has been limited

[26,27], but the correlation between predicted and actual pollution

concentrations at monitoring sites is moderate (between 0.35 and

0.71 [26,28]), as is the spatial overlap between predicted and

observed plumes (average 12% [29]). Ultimately, they are physical

models rather than empirical models. We believe there is merit in

investigating the independent empirical relationship between

observed fire activity and measured pollution for two reasons.

First, empirical models quantify the direct link between cause and

effect, rather than relying on physical models and all of their

necessary assumptions. Second, the insights gained may be used to

improve computationally demanding physical models.

Remote sensing has revolutionised the analysis of landscape fire

activity, and satellite data may also be useful for measuring smoke

transport. The Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments aboard the Terra and Aqua satellites

(operated by the US National Aeronautics and Space Adminis-

tration) provide a wide range of fire-relevant information. In the

active fire product (MOD14 from Terra and MYD14 from Aqua),

thermal anomalies (referred to herein as ‘‘hotspots’’) are recorded

at a nadir resolution of 1 km for each satellite overpass (occurring

globally at approximately 02:00, 10:00, 14:00 and 22:00 local

time) [30], and the Fire Radiative Power (FRP) of each hotspot is

measured. This attribute provides valuable information about the

rate at which a fire is generating energy, and has been directly

correlated with its aerosol emissions [31,32]. Analytic use of the

FRP measurement provides a unique opportunity to better

examine the air quality impacts of bushfire smoke.

Here we investigate the relationship between daily pollution

levels and the daily spatial pattern of hotspot activity in the

landscapes surrounding two large Australian cities: Sydney and

Perth. We also investigate how atmospheric conditions affect the

relationship between pollution and hotspots, because smoke from

fires will only move towards cities if winds are blowing from the

fire to the city, and the smoke remains in the lower levels of the

atmosphere. Specifically we examine: (1) whether there is a detect-

able link between fire activity as measured by MODIS FRP and

particulate matter concentrations in cities; (2) the spatial and

temporal zone of influence of bushfire activity on city pollution; (3)

the potential for FRP to be combined with weather variables for

smoke pollution forecasting; and (4) the use of FRP as a tool to

filter the contribution of biomass smoke to records of air pollution

in urban airsheds.

Materials and Methods

Study Areas
Sydney is a city of 4.0 million people, lying in a highly

developed coastal lowland plain,surrounded by dissected sand-

stone tablelands (Figure 1a, Figure 2). The native vegetation in the

tablelands is largely intact and is dominated by a diverse dry

sclerophyll eucalypt forest [33], with a total area of approximately

20,000 km2. The climate is warm and temperate, and the rainfall

total of 1200 mm is evenly distributed through the year (Bureau of

Meteorology data). Approximately 5% of the forest is burnt by

unplanned fires each year, and another 1% is burnt by prescribed

fires [20]. Other flammable vegetation types (grasslands, shrub-

lands and woodlands) are minor components and mostly further

from Sydney than the forests.

Perth is the capital City of Western Australia (WA), with

a population of 1.4 million people in a metropolitan area of

5300 km2 (Figure 2). The climate is Mediterranean, with cool wet

winters and hot dry summers that are conducive to bushfires. The

surrounding forest has a similar total area to Sydney (approxi-

mately 20,000 km2), but is much more scattered (Figure 1b). The

forests are also dry sclerophyll and the communities are mostly

dominated by one of two commercial species, namely jarrah

(Eucalyptus marginata) and karri (Eucalyptus diversicolor) [34]. In

the Warren region, typical of the forested part of WA,

approximately 7% of the forest is burnt each year by prescribed

fire and 1.5% by wildfire [19].

Data
Pollution records were obtained from monitoring stations in

each of the cities. For Sydney the monitor is at Richmond, 50 km

inland (233.618, 150.746, New South Wales (NSW) Department

of Environment and Climate Change, http://www.environment.

nsw.gov.au/AQMS) and for Perth it is at Duncraig, 2 km inland

(231.826, 115.783, WA Department of Environment and

Conservation, WA Air Quality Data). Daily peak PM2.5 data

was available for both cities from the beginning of 2002 to the end

of 2007 (n= 2191). For Perth, the mean daily peak value across the

year is approximately 8 mg/m3, and for Sydney it is about 10 mg/
m3 (Figure 3). Exceedance of the 25 mg/m3 24-hour air quality

guideline occurs in less than 5% of days in all seasons for both

cities. Exceedances are equally likely in all seasons in Perth, but for

Sydney they are more frequent in summer, and these are most

likely due to bushfires. The ambient level of pollution is mostly due

to fossil fuel combustion [35], but other sources, including dust

storms, cause some of the exceedances [36].

The daytime detects from the MODIS active fire data from

Aqua and Terra were acquired from the Fire Information for

Resource Management System (FIRMS – http://maps.geog.umd.

edu/firms/) for 2002 through 2007. Note that Collection 4 values

were used, meaning that they were not multiplied by pixel area as

in Collection 5. As such, this study follows the methods developed

by Ichoku and Kaufman (2005) [37] and Henderson et al. (2010)

[38] for the use of MODIS Collection 4 data for smoke detection.

For each day, all of the daytime hotspots within 500 km were

identified, and their distance from and direction to the pollution

monitors were calculated, and their FRP and distance-weighted

FRP (FRP/distance2) values were recorded. The distance weight-

ing was included because we expect smoke concentrations to

diminish in proportion to the square of the distance from the

source.

The daily weather record was obtained for the closest weather

station from each city from the Bureau of Meteorology: Sydney

Airport (BOM Station number 066037) and Perth Airport (BOM

Station number 009021), which are approximately 50 km and

25 km away from the pollution monitors, respectively. We derived

daily values of mean wind speed, whether the wind was onshore or

not (wind angle ,=90), and Forest Fire Danger Index (FFDI).

The FFDI is a function of wind speed, temperature, humidity and

Predicting Smoke Pollution from MODIS Hotspots
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Figure 1. Map of the two study landscapes: a) Sydney; b) Perth. Dominant vegetation types are shaded and hotspots during the study are
superimposed: forest/woodland hotspots in red; and non forest/woodland hotspots in black. Distances from the pollution monitor are shown as
concentric rings.
doi:10.1371/journal.pone.0047327.g001

Figure 2. Location of Sydney and Perth, with the best radius also shown.
doi:10.1371/journal.pone.0047327.g002
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a drought factor, and is routinely used to predict bushfire risk in

Australia [39]. In addition, upper atmospheric weather data were

obtained from the same weather stations. These were used to

calculate the Continuous Haines Index of atmospheric stability,

using temperature and dewpoint values at 700 and 850 hPa [40],

as well as the wind direction and wind speed at the surface and

700 hPa. These data are recorded several times per day, and

through preliminary analysis we found that the early morning

record (6 am) provided the best relationships with pollution levels.

We also calculated the wind-angle relative to the dominant

direction of hotspots using both the station and upper atmospheric

wind directions. That is, the mean bearing between hotspots and

the pollution monitor was calculated, and this was subtracted from

the wind-direction so that a value of 0 represents the situation

where the monitor is directly downwind from the mean centre of

hotspots, and 180 where the monitor is upwind. For this

calculation, all hotspots within 100 km of Sydney and 400 km of

Perth were used, because these were found to be the distances over

which hotspots influenced pollution levels (see below).

Lag Effects and Duration of Pollution Events
If fire activity is to be used in a pollution forecasting tool, then it

is necessary that the fire activity from one day is related to the

pollution level from the following day. That means either it must

take one day for the smoke to travel to the city, or otherwise the

pollution event must last more than one day. It is also possible that

this lag effect lasts more than one day. To explore the nature of lag

effects, we constructed generalised linear models of PM2.5

(dependent) against FRP values (predictor) for different lag periods

from 1 to 5 days. Three different lagged FRP measures were tested

at each lag duration: the lag day on its own (Lag FRP), all days

from the lag to the day before the current day (Combined Forecast

FRP) and all days including the current day (Combined FRP). The

models were structured with a normal error distribution and

identity link function. The raw values of PM2.5 and the residuals of

the model were inspected for normality, and the goodness of fit

was compared among the variables using the proportion of

variance explained (adjusted r2). To explore how long smoke may

persist, we calculated the lengths of periods when the respective

95th percentile values were exceeded for each of FRP and PM2.5.

This generated two frequency distributions of duration. If we

define an ‘‘event’’ as any day above the 95th percentile among all

days, the sum of the number of events and their durations will be

approximately 109 (5% of the total number of days). For both of

these analyses, the distance-weighted FRP within the best-fitting

radius around the pollution monitor was used (see below, which

for Sydney was 100 km and for Perth 400 km).

Radius
There is a limit to the distance at which smoke from fires will

spread to a city. Wise (2008) [4] acknowledged this in his study

comparing pollution with fire activity in Texas, by using a 45 km

cut-off, though he did not know the actual extent of the influence.

To investigate how distance influenced pollution, we constructed

generalised linear models of the relationship between FRP

(predictor) and PM2.5 (dependent) using subsets of the hotspots

at increasing radii from the monitor: at 25, 50, 75, 100, 150, 200,

300, 400 and 500 km. These were inclusive subsets, meaning that

all of the hotspots closer than each radius were included. As with

the lag analysis, the models used a normal error distribution, and

the best interval was identified using the proportion of variance

captured by the model (adjusted r2). For each radius, we also

determined whether the r2 could be improved by log-transforming

the FRP, PM2.5, or both variables. For all analyses, we used the

mean FRP from the current and previous day (Combined FRP

with lag = 1, which we now term FRP01), to take account of

residual smoke from the previous day’s fires. The lag analysis

(above) identified this to be the best FRP variable for predicting

PM2.5. Also, days without fires on both days (zero FRP01) were

excluded, giving a final sample size of 1845 days for Sydney and

1687 for Perth. This was to reduce the ‘noise’ in the data because

pollution from other sources still occurred on those days, but the

cause was unlikely to have been bushfire. Also, from an

operational perspective, a bushfire smoke prediction model is

Figure 3. Seasonal PM2.5 distribution for a) Sydney; b) Perth. For each season the mean, standard deviation, 95th percentile and individual
outliers are plotted. The y axis is the maximum daily PM2.5 (Particulate Pollution ,2.5 mm in size, in mg/m3 ).
doi:10.1371/journal.pone.0047327.g003

Predicting Smoke Pollution from MODIS Hotspots

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e47327



only relevant during bushfire events, and removing zero FRP01
days also reduced skewness in the FRP01 data. Exploratory

analysis revealed that removing zero FRP01 days did not change

the form of the relationships in the models but improved their

goodness of fit.

Best Model
A model was developed to maximise the explained variation in

pollution levels for each city. The variables available for this

process were FRP (either single day or FRP01), PM2.5 from

yesterday (PMlag), and all of weather variables: FFDI, Haines

index, wind speed, direction and angle relative to the hotspots.

PMlag was also included purely to improve the predictive ability of

the model. The best model was identified using a model selection

process, examining all of combinations of variables and selecting

the one with the lowest Akaike Information Criteria (AIC) value

[41]. Supported alternative models (those with DAIC ,2) were

also identified. From the best model, all two-way interactions

between FRP and the other variables were tested and retained if

they reduced the AIC. The importance of each variable in the

final model was assessed by calculating the proportion of explained

variation attributable to each variable [42]. The modelling was

repeated using the log of FRP, using the log of PM2.5 as the

dependent variable and using all days for the sample (i.e. not

restricted to days with fire activity, which is the default).

Evaluation
A database of historical causes for extreme pollution events had

previously been compiled for six cities, including Perth and Sydney

[36]. This was done by matching the days where pollution

exceeded the 95th percentile of all values against a variety of media

information and empirical data sources. Probable causes could be

indentified for 67% of events and, of those, 94% were confirmed

as bushfire days. The raw FRP01 data were validated against this

database by matching days that were known bushfire days and

PM2.5 peaks to 95th percentile peaks in the FRP01.

Results

During the study period (2002 to 2007) 1845 and 1687 days had

both pollution measures and fire hotspots in Sydney and Perth,

respectively. In Sydney, the hotspots occurred in a wide arc of

forest surrounding the city from north, west, and south (Figure 1a).

Major, damaging fires occurred in the 2002/3 and 2006/7 fire

seasons. A fire rose diagram for unweighted hotspots (showing the

number of hotspots in each 10u compass sector, centred on the

pollution monitor) is dominated by the fires that burnt the

Australian Alps and Canberra in January 2003 (300–500 km to

the south-west of Sydney) (Figure 4a). The distance-weighted fire

rose shows a much more even spread of fire directions, with the

fires from 2002/3 and 2006/7 prominent, but with fires from land

in all directions. In Perth, hotspots were more dispersed than in

Sydney and the fires were smaller (Figure 1b). Consequently, the

fire roses were similar for the weighted and unweighted distances

(Figure 4b). Notice the occurrence of hotspots in the direction of

the ocean for Sydney, which is due to the inland position of the

pollution monitor.

In Sydney, the explanatory power of Lag FRP decreased with

the length of the lag: r2 decreased from 0.17 for the current day to

0.04 for 4 days previously (Figure 5a). However, the best

explanatory power was obtained with the Combined FRP with 1

day lag (FRP01, r
2 = 0.23) and was also high for Combined FRP

with 2 and 3 day lags. For the Combined Forecast FRP (excluding

the current day), the explanatory power was highest for a 3 day lag

(0.19). Perth showed a similar pattern, with the Combined FRP

with 1 day lag giving the best explanatory power, though this was

low (r2 = 0.84, Figure 5b). For both cities, the best FRP variable to

use for modelling is the current day + previous day (FRP01).

Analyses on the radius of influence showed a peak in

explanatory power at 100 km for Sydney (r2 = 0.24, Table 1).

The peak for Perth was at 400 km with a lower explanatory power

(r2 = 0.08). None of the log-transformations improved the fit of the

relationships.

There were 69 exceedance events for PM2.5 in Sydney, of which

52% lasted a single day. Only four events lasted four days or more

(Figure 6). The two longest events were associated with major fire

events in the Sydney region (Christmas 2001 fires and early

December 2002). Two other four-day events were both during

winter, and were not verified fire events (11th July 2002 and 7th

June 2005). In Perth, there were more events with shorter

durations (n = 80, 75% lasted a single day), and only two lasted

four days. These were both in May (26th May 2004 and 9th May

2006), and were not verified fire events. The exceedances in FRP

showed similar patterns to the PM2.5 and similar differences

between the cities. In Sydney there were 48 events, of which 54%

lasted a single day, but ten lasted four days or more. In Perth there

were 75 events, of which 75% lasted a single day, and only three

were four days or more.

The best statistical model for Sydney included positive effects

for FRP01, FFDI, C-Haines, PMlag and with on-shore winds and

a negative effect of wind-speed. PM25lag had the strongest effect

(see the importance value, Table 2a), followed by FRP01. There

were also negative interactions between FRP01 and wind-

speed,and FRP01 and PM25lag, but these were weak effects

(Table 2, Figure 7). The model explained 56% of variance in

PM2.5 (r
2 = 0.562) and there were no supported alternatives. When

the analysis was repeated without PM25lag, the final model was

similar, but explained 45% of variation. Using log(PM2.5) as the

dependent variable or including all days also resulted in similar

models and explanatory power (r2 = 0.561, 0.569 respectively).

Using the log of FRP as a predictor variable gave weaker results

than the untransformed FRP variables.

The best model for Perth was similar to Sydney, but explained

less variation (r2 = 0.310, Table 2b). There were positive effects of

FFDI, C-Haines and PM25lag and on-shore wind and a negative

effect of wind speed. The FRP01 effect was weak, and there was an

interaction between FRP01 and C-Haines, which meant that FRP

had a positive relationship with PM2.5 which became slightly

negative when the C-Haines index was less than 1.3 (on about

31% of days). There were no supported alternative models.

PM25lag was the most important variable, followed by C-Haines.

Without PM25lag, the best model explained only 19% of variance.

Using log(PM2.5) as the dependent variable, including all days, or

using log of FRP as the predictor variable all resulted in similar

models with slightly lower explanatory power (r2 = 0.294, 0.308,

0.306 respectively).

There were 54 validated bushfire events in Sydney with

matching PM2.5 peaks, and 74% of these corresponded with

peaks in the raw FRP01 value and 61% corresponded with peaks in

the model predictions. For Perth there were 23 events and 35%

corresponded with the raw FRP01 and 43% with the model

predictions.

Discussion

We have demonstrated that there is a relationship between fire

activity detectable from satellites and pollution in urban centres.

Moreover, there are windows of spatial and temporal influence of

Predicting Smoke Pollution from MODIS Hotspots
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fire activity on pollution. For Sydney, the radius of influence is

relatively small (100 km) and the relationship is strong, while for

Perth the radius is much larger (400 km) and the relationship is

weak. The explanatory power of the models was improved by

including weather and pollution history variables, to the extent

that more than half of the variance in pollution could be explained

for Sydney. The weather relationships revealed higher pollution

when the atmosphere was stable, when wind speed was low and

when the wind in the upper atmosphere was blowing on-shore.

Importantly, wind flow from the fires to the monitor was not

present in the models. This is presumably because on-shore winds

that trap in-situ pollution in the city basins are more important to

the overall level of pollution than winds transporting smoke from

bushfires, even if days without fire activity are excluded. This

trapping effect is probably why stable air and low wind speed also

lead to more pollution.

The differences between the cities have a logical explanation.

Sydney is bounded on three sides by extensive forests (approxi-

mately 20,000 km2) at a distance of about 100 km. Beyond this is

an extensive agricultural belt with very little fire activity. The

mean area burnt in these forests is approximately 5% per year, of

which more than 80% is unplanned fire [20]. Generally, the wind

associated with bushfire events blows from an arc between

northwest and southwest, and so blows smoke into the city. The

forests around Perth are much more scattered, comprising small

patches spread across a larger region. A higher proportion of the

forests are burnt each year (8.5%) [19], but the regime is

dominated by prescribed fires (7% compared to 1.5% for

Figure 4. Unweighted (left) and weighted (right) hotspot rose. a) Sydney; b) Perth. The diagram shows the sum of FRP values (raw or
weighted as FRP/distance2) in 10u sectors around the compass. The scale is in FRP units.
doi:10.1371/journal.pone.0047327.g004

Predicting Smoke Pollution from MODIS Hotspots
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unplanned fire). The closeness of the forests and the more

extensive unplanned fire explain why the model has a smaller

radius and better goodness of fit for Sydney than for Perth. These

differences between cities mean that a forecast tool must be based

on a model specific to each city.

Our empirical modelling method shows some potential for

developing a forecasting tool for bushfire planning. For both cities,

the best single predictor of daily pollution is the previous day’s

pollution, which may be of use to health authorities. Nevertheless,

the FRP and weather variables also contribute substantially to the

predictive power. For Sydney, the predictive model explained

most of the variation in pollution and three quarters of the known

bushfire caused pollution days were identified as peaks in the FRP

data. For Perth, the previous days FRP is actually a better

predictor than the current day, albeit with low predictive power.

Our method may be more efficient and accurate for identifying

Figure 5. The goodness of fit between FRP and PM2.5 at increasing lag durations for Sydney and Perth. For each lag, three measures
were compared: A) the lag day on its own (Lag FRP); B) all days including the current (Combined FRP); and C) all days from the lag to the day before
the current one (Combined Forecast FRP).
doi:10.1371/journal.pone.0047327.g005

Table 1. Strength of model for various hotspot radii for
Sydney and Perth.

Radius (km) Sydney r2 Perth r2

50 0.122 0.050

75 0.161 0.046

100 0.243 0.044

150 0.183 0.045

200 0.194 0.062

300 0.181 0.072

400 0.126 0.075

500 0.112 0.062

doi:10.1371/journal.pone.0047327.t001

Predicting Smoke Pollution from MODIS Hotspots
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historical fires than other methods available that require laborious

searches of print media and government reports [43].

Improvements could be made to the forecasting ability by

addressing some of the limitations of the data. The most important

of these is the lack of identification of non-bushfire sources of

Figure 6. Frequency distributions of event durations for PM2.5 and FRP exceedances. a) Sydney and b) Perth. Values for PM2.5 and FRP are
the 95th percentiles.
doi:10.1371/journal.pone.0047327.g006

Figure 7. Predictions from the best model for Sydney. The plots give the relationship between PM25 and FRP01 at different levels of wind
speedsta, PM25lag, C-Haines and FFDI. For wind speedsta and C-Haines these levels are the quartiles (25, median, 75) while for PM25lag and FFDI they
are set levels (i.e. 50 represents PM2.5 exceedance and also a fire danger of Severe). In each plot, all other variables are held at their median values.
doi:10.1371/journal.pone.0047327.g007

Predicting Smoke Pollution from MODIS Hotspots
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pollution, since these are the principle driver of pollution levels on

most days. Pollution from these sources also varies and our analysis

suggests that they respond to weather conditions, perhaps more

than smoke does. If non-smoke pollution days could be filtered

from the data then the accuracy of the models would be greatly

increased. A more explicit representation of atmospheric transport

such as a two or three-dimensional wind-field between the source

and monitor would also improve the relationship. Many fires,

especially larger ones, inject smoke high into the atmosphere

which may reduce pollution on the ground [44]. Since there is

actually a relationship between FRP and injection height [44], this

effect could be directly incorporated into a predictive model and

may be more successful than the use of an atmospheric stability

index such as C-Haines. Ultimately, a hybrid model using daily

snapshots of FRP and a three-dimensional atmospheric transport

model may be the most fruitful approach.

There are other limitations that affect the accuracy of the

models. The raw FRP values used here do not account for

differences in vegetation type. Vegetation correction factors have

been applied elsewhere to FRP values [37], but none have been

developed for Australia. The episodic nature of major bushfire

events means that the six year time series used here only captured

a small number of events (54 events reported in the media for

Sydney and 23 for Perth), and these varied greatly in magnitude.

The analysis would be improved with a longer time series. Sydney

experiences extreme fire seasons (where .10% of the forest area

burns) between once and twice per decade [20], so it may be that

several decades of data are required to determine the nature of the

relationship between FRP and pollution levels.

Our results are also relevant to the debate over the appropriate

level of prescribed fire treatment. Prescribed fire is imposed as

a means of reducing the area and impact of wildfire, and has been

suggested as one means of preventing increased wildfire activity

due to climate change. However, in many Australian landscapes

several hectares of prescribed fire are required to reduce the area

of wildfire by one hectare. For example, around Sydney 3–4 ha of

prescribed fire are required per hectare reduction in wildfire area

[20,45], and the forests around Perth, 6 ha are required [19].

However, prescribed fires consume less biomass per hectare than

wildfires because they are more patchy [46], are usually confined

to the surface fuels and leave larger proportion of fuel unburned. It

has been shown for Southern Australia that smoke plumes from

prescribed fires blow over cities, though on average these are five

times smaller than plumes from wildfires [21]. Further examina-

tion of the contribution of prescribed and wildfires to smoke is

needed before the likely impact of increased prescribed burning

could be accurately predicted.

In conclusion, this study has identified a clear relationship

between remotely sensed fire activity and pollution levels in two

Australian cities. It has also identified the distance over which fires

tend to supply smoke to the cities, and some of the challenges to

developing a useful operational tool. With some improvements,

models developed using this method could become useful in many

fire-prone regions around the world for forecasting smoke

pollution. They may be used as an adjunct to smoke-plume

modelling or may eventually prove to be more useful. Even as they

are now, the method can be used for rapid retrospective

identification of bushfire pollution days, in contrast to the labour

intensive methods used by Johnston et al. [36]. With further

separation of FRP into wild and prescribed fires, our approach

could also provide a new tool for understanding the comparative

smoke pollution exposure to humans from fires of both types.
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