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Abstract

The discovery of copy number variations (CNV) in the human genome opened new perspectives on the study of the genetic
causes of inherited disorders and the aetiology of common diseases. Here, a single-cell-level investigation of CNV in
different human tissues led us to uncover the phenomenon of mitotically derived genomic mosaicism, which is stable in
different cell types of one individual. The CNV mosaic ratios were different between the 10 individuals studied. However,
they were stable in the T lymphocytes, immortalized B lymphoblastoid cells, and skin fibroblasts analyzed in each individual.
Because these cell types have a common origin in the connective tissues, we suggest that mitotic changes in CNV regions
may happen early during embryonic development and occur only once, after which the stable mosaic ratio is maintained
throughout the differentiated tissues. This concept is further supported by a unique study of immortalized B
lymphoblastoid cell lines obtained with 20 year difference from two subjects. We provide the first evidence of somatic
mosaicism for CNV, with stable variation ratios in different cell types of one individual leading to the hypothesis of early
embryonic chromosome instability resulting in stable mosaic pattern in human tissues. This concept has the potential to
open new perspectives in personalized genetic diagnostics and can explain genetic phenomena like diminished penetrance
in autosomal dominant diseases. We propose that further genomic studies should focus on the single-cell level, to better
understand the aetiology of aging and diseases mediated by somatic mutations.
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Introduction

Recent developments in the genome-wide technologies used to

analyze structural variations have led to the identification of

thousands of heritable copy number variations (CNV). These are

submicroscopic copy number variations in DNA segments ranging

from kilobases (kb) to megabases (Mb) in size, occurring in both

phenotypically normal and affected subjects [1]. CNV can be a

tandem or inverted duplication or may involve complex gain or

loss of sequences at multiple sites within the genome [2]. It is

known that some CNV can influence gene expression and play a

role in the aetiology of common diseases such as diabetes, cancer,

and heart disease [3,4].

To date, only genome-wide technologies have been available to

detect such CNV and only DNA extracted from a multitude of

cells could be analyzed by those approaches [1,2,3,4]. Recently,

two single-cell-directed approaches have been described as

‘parental-origin-determination fluorescence in situ hybridization’

(pod-FISH) [5] and ‘polymorphic deletion probe-based FISH’

(PDP-FISH) [6]. These techniques require CNV-region-specific

bacterial artificial chromosomes (BAC; pod-FISH) and fosmid

clones (PDP-FISH) to visualize copy number polymorphisms on

homologous chromosomes. pod-FISH is available for 225 CNV,

based on specific BAC clones of more than 150 kb in length and

with variation frequencies in populations of over 10%. The

selected polymorphic regions represent size variations, detectable

as different signal intensities with pod-FISH [5]. In contrast, PDP-

FISH has been reported for three CNV loci using fosmid probes,

which distinguish signal presence and absence rather than signal

intensity differences [6].

pod-FISH has already been successfully used to identify the

parental origin of individual derivative chromosomes, such as the

characterization of chimerism and uniparental disomy 15 [5].

However, we have found not only interindividual differences, as

expected, but also intraindividual differences in the signal

intensities of polymorphic BAC probes. Thus, in a woman with

Turner syndrome and the mosaic karyotype 45,X,der(7)-

t(Y;7)(p11.1,11.2;p22.3)[122]/45,X[48], pod-FISH determined
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the parental origin of the normal and derivative chromosomes 7

with two BACs (RP11-533E18 and RP11-45N9) of the 15 BACs

tested [7] (Table 1 and Figure 1A). Uniparental disomy 7 was

excluded for both cell lines and the result was confirmed by

microsatellite analysis. Surprisingly, der(7) was found to be

identical to that of the normal paternally inherited chromosome

7 in the cell line 45,X by pod-FISH, which was also confirmed

with microsatellites [7]. Therefore, the evolution of that karyotype

could be reconstructed (Figure 1B). A summary of the pod-FISH

results for this individual showed that the number of metaphase

spreads displaying different detectable signal intensities in the

CNV regions ranged from 6% to 90% (Table 1), reflecting

different clonal cell lines in one tissue with respect to the

investigated CNV.

pod-FISH and PDP-FISH have also been applied to the analysis

of cellular chimerism after bone-marrow transplantation in

leukemia patients [5,6]. To identify a low level of chimerism, it

is necessary to find polymorphic regions containing CNV in 100%

of the recipient and donor cells. This condition was fulfilled for the

BAC clone RP11-367L15, mapping to chromosome 19p13.2, in a

male suffering from AML1–ETO-positive acute myeloid leukemia

(AML) (Figure 1C). After bone-marrow transplantation from a

female donor, the cellular chimerism in the bone marrow was

determined as 60% donor versus 40% recipient cells using a

centromeric probe for the X chromosome. Surprisingly, no signal

intensity variation for RP11-367L15 was found in only 55% of the

donor cells. The remaining 45% of donor cells showed the

identical pod-FISH signal pattern as those of the recipient cells

(Figure 1C).

The similar intraindividual differences detected by pod-FISH

turn out to be a common observation rather than an exception.

Similar findings were made in a patient with cytogenetically

distinguishable chromosome 5 and the derivative chromosome 5, in

whom pod-FISH with six BACs specific for different CNV regions

on chromosome 5 revealed different signal intensity patterns for

BAC clones RP11-551B22 and RP11-88L18 on the homologous

chromosomes in different metaphase spreads (Figure 1D).

For a long time it has been generally accepted that all cells in an

individual are genetically identical, except in individuals with

somatic mosaicism that causes disease or the rearrangements of

the immunoglobulin and T-cell-receptor genes [8]. In contrast,

more and more data are available demonstrating intertissular

genomic variation for numerical chromosome aneuploidy con-

tributing to mosaicism as a global mechanism for example in germ

cells, placenta, human brain, skin, liver and blood [9,10,11].

Recently, it has been shown that extensive de novo and recurrent

CNV occurs in vitro in mouse embryonic stem cell lines derived

from common parental lines, leading to mosaic animals containing

variants of the zygote genome [12]. A recent study of different

human tissues and organs has revealed the existence of somatic

CNV mosaicism [13] besides the previously reported whole

chromosome aneuploidies in the above mentioned human tissues.

These observations were confirmed as putative de novo somatic

CNV events in monozygotic twins [14]. Nonetheless, somatic

CNV mosaicism patterns have not yet been fully resolved, because

all previous studies were performed with whole-genomic DNA

extracted from a large number of cells.

To test whether different cell types have specific CNV patterns

when observed at the single-cell level, we used chromosome-

specific pod-FISH on metaphase spreads from 10 healthy

individuals, four men and six women. Furthermore, we analysed

the stability of CNV mosaicism in B-lymphoblastoid cell lines in

two individuals, obtained 20 years ago and recently.

Results and Discussion

Five BACs with expected high population frequencies in the

CNV regions were selected for further investigation of ten healthy

Table 1. pod-FISH analysis of der(7)t(Y;7) in an individual with Turner syndrome.

Chromosomal band BAC
Number of metaphase spreads with different signal intensities with BAC
probes [%]

Child Father Mother

7p21.1 RP11-79G16 31 11 17

7p15.3 RP11-810J17 16 12,5 38

7p15.1 RP11-643O8 70,5* 16 50

7q11.1 RP11-144H20 38 8 17

7q11.21-7q11.1 RP11-533E18 87,5** 89*** 15

7q11.23 RP11-422O1 23 24 0

7q22 RP11-188C21 – 0 –

7q22.1 RP11-395B7* 6 0 0

7q22.1 RP11-344K24 6 0 18

7q31.33 RP11-807H17 50 11 38

7q32.2 RP11-537A1 21 0 0

7q33 RP11-639H21 12 16 15

7q34 RP11-45N9 6 88*** 33

7q34 RP11-307I2 12 0 25

7q35 RP11-634O11 16 33 12

*Low signal intensity detected on der(7)t(Y;7) and on one normal chromosome 7 in cell line 45,X.
**Low signal intensity was always detected on der(7)t(Y;7).
***Different signal intensity levels for RP11-533E18 and RP11-45N9 in the father were observed in nonrandom combinations (on one chromosome, weak signal for
RP11-533E18 accompanied by strong signal for RP11-45N9).
doi:10.1371/journal.pone.0009591.t001

pod-FISH
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individuals. Three easily accessible cell types were studied: T

lymphocytes prepared from phytohemagglutinin (PHA)-stimulated

peripheral blood [15], B lymphocytes from Epstein–Barr-virus-

immortalized B-lymphoblastoid cell lines [16], and fibroblasts

from cultivated skin biopsy samples. GTG banding analysis

revealed normal karyotypes in nine individuals and a Robertso-

nian translocation, rob(13;15), in one subject. In one cell type, we

found cells with different and equal signal intensities for the same

polymorphic BAC, varying between 0% and 95%, and random

variations between all 10 individuals studied (Figure 2). Surpris-

ingly, the variation ratio within the cells of one individual

remained similar in all three cell types studied (P.0.05;

Figure 2). Only in subject 3 did the CNV located at 14q11.2

(RP11-831B15) display a nonuniform pattern in T lymphocytes vs

that in B lymphocytes and fibroblasts (P,0.017; Figure 2). Also

exceptions were the probes for CNV regions on chromosome 2

(RP11-15J7: 88,921,446–89,083,5701bp; RP11-685N3: 88,981,

161–89,122,370 bp), which are located within the highly variable

region of the immunoglobulin (Ig) gene (IGKV). We presume that

for this reason the signal variation pattern was generally higher in

the studied B cells than in other cell types (P,0.05). The somatic

rearrangements of the Ig and T-cell-receptor (TCR) genes are well

known and well characterized [17,18]. Recombination was

demonstrated by pod-FISH in T lymphocytes using BAC

probes for variant CNV in the TCR gene regions (Figure S1

and Table S1).

To investigate whether once acquired CNV variation ratio

maintain stable throughout life or underlie changes, we applied

Figure 1. Single-cell estimation of CNV by using pod-FISH. (A) The parental origin of der(7) in an individual with Turner syndrome and the
mosaic karyotype 45,X,der(7)t(Y;7)(p11.1,11.2;p22.3)[122]/45,X[48] was detected with RP11-533E18 (red, 7q11.21–7q11.1) and RP11-45N9 (blue,
7q34). (B) The homologous chromosomes 7 of the father and der(7) of the child are marked with asterisks. The suggested development of this rare
mosaic karyotype is shown schematically. (C) Different signal intensities for the CNV at 19p13.2 (RP11-367L15, blue) are apparent on the two
homologous chromosomes 19 in metaphase, and in the interphase nuclei of all cells of an AML patient with t(8;21)(q22;q22.3) before bone-marrow
transplantation (left). In the bone-marrow donor cells, 55% of the cells showed no signal intensity difference in the CNV region detected with RP11-
367L15 (blue) at 19p13.2 (right, upper nucleus). However, the remaining 45% of the recipient cells showed signal intensity differences identical to
those of the recipient (right, lower nucleus). As well as RP11-367L15 (blue), probes for AML1 (21q22.3, green) and ETO (8q22, red) were also applied,
showing two fusion signals (f) in the patient cells. (D) pod-FISH using six BACs specific for different CNV regions on chromosome 5 in a patient with
normal chromosome 5 and der(5) revealed different signal intensity patterns for BAC RP11-551B22 (green) and RP11-88L18 (blue).
doi:10.1371/journal.pone.0009591.g001

pod-FISH
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Figure 2. Varying signal intensity patterns of 5 selected CNV loci. Analysis of the signal intensity patterns of CNV at 2p11.2 (RP11-685N3:
88,981,161–89,122,3701bp; RP11-15J7: 88,979,594–89,141,7171bp), 4q12 (RP11-365H22: 52,354,875–52,530,859 bp), and 14q11.2 (RP11-645B7:
18,654,379–18,833,779 bp; RP11-831B15: 19,273,689–19,767,232 bp) in three cell types, each, from 10 different individuals. Notes: (1) X axis: BAC
probes; Y axis: [%] = percentage of cells with different signal intensities. (2) In diagrams with no columns, no cells with different signal intensities for
the BAC probes were detected. Abbreviations: T cells ( = metaphases from T lymphocytes collected after PHA stimulation of the peripheral blood), B
cells ( = Epstein–Barr-virus-immortalized B-lymphoblastoid cell lines from the peripheral blood), and fibroblasts ( = metaphases from skin biopsies).
* Statistically significant difference (B cells vs T cells and B cells vs fibroblasts, P,0.05). ** Statistically significant difference (T cells vs B cells and T cells
vs fibroblasts, P,0.017).
doi:10.1371/journal.pone.0009591.g002

pod-FISH
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pod-FISH for 36 CNV regions on metaphase spreads of B-

lymphoblastoid cell lines from two individuals established with a

time difference of 20 years. The age of the probands was 25 and

30 years, respectively, at the first sample acquisition. As in the

aforementioned study here we also found two cellular populations

with different signal intensities of the same BAC, ranging from 0%

to 100%. Also these varied between the two individuals studied.

But interestingly, the variation ratio of BACs remained the same in

the B-lymphoblastoid cell lines established with 20-year time

difference within each subject (exemplified for one individual in

Table S2).

The mechanism underlying the establishment of CNV mosa-

icism during mitosis remains unclear. The CNV-focused single cell

approach applied here might only uncover a tip of the iceberg in

the recently reported background of extensive chromosomal

instability in human cleavage-stage embryos [19] and will help

to understand how cell linage trees evolve [20]. Several studies

have predicted that some CNV and nonrecurring copy number

changes (CNC) in cancer cell lines, which are induced by

aphidicolin or occur in some cases of Duchenne muscular

dystrophy, Smith–Magenis syndrome, and Pelizaeus–Merzbacher

disease, originate from nonhomologous end joining, fork stalling

and template switching, or microhomology/microsatellite-induced

replication mechanisms [21,22]. Moreover, such evolutionarily

significant hotspots as fragile sites and aphidicolin-induced CNC

might resemble many human CNV [21] (Table S3).

Overall, we provide the first sound evidence of somatic

mosaicism for CNV, with stable variation ratios in different cell

types. We have described at least two different cell lines: one with

the same or equal signal intensity and one with a significant signal

intensity difference in the investigated CNV region on homologous

chromosomes. The CNV ratios of these cell lines differ between

individuals but not within individuals. We suggest that the somatic

recombination of polymorphic regions might occur at a relatively

early time point in embryogenesis because all the well-differenti-

ated cells studied have similar CNV mosaic patterns (Figure 3).

This hypothesis is substantiated by new findings of complex

chromosomal imbalances involving not only whole chromosomal

aneuploidies and uniparental disomies but also segmental

deletions, duplications, and amplifications in human cleavage-

stage in vitro-fertilized embryos [19]. Interestingly, when a CNV

pattern is once established, the variation ratio seems to be stable

throughout all tissues and over a life span of 20 years minimum

studied here; or varies, as in the case of the CNV in T cells

compared with the other cell types studied. Finally, the study of

this phenomenon should open new perspectives in personalized

genetic diagnostics. The intraindividual specific mosaicism ratio at

a certain susceptibility gene for a disease, as reported here, might

have a higher impact than previously expected, especially for so-

called ‘multi-factorial diseases’, and might also explain clinical

genetic phenomena like diminished penetrance in autosomal

dominant diseases or clinical signs without apparent mutations

when only a single tissue is screened.

Materials and Methods

Material
The study included heparinised peripheral blood from an

individual with der(7)t(Y,7) and both parents; a mentally retarded

patient with der(5)(pter-.q21::q23-.q21::q21-.qter) and 10

healthy individuals, as well as unstimulated bone-marrow samples

from an AML patient, and Epstein–Barr-virus-immortalized

lymphoblastoid cell lines established from EDTA-treated blood

and biopsy samples derived from swages of upper arm skin from

the 10 healthy individuals. The age of these later mentioned 10

probands ranged from 23 to 31 years, with a median age of 26

years and a male:female ratio of 4:6. All participants involved in

this study gave a written informed consent. The experimental

procedures performed on human tissue samples, the establishment

of Epstein–Barr-virus- (EBV) immortalized B-lymphoblastoid cell

Figure 3. Scheme for the development of somatic CNV mosaicism. Parental germ cells with a certain haploid pattern of CNV fuse to a zygote
with a defined diploid pattern of CNV. It is hypothesized that in early embryogenesis, the mitotic recombination of single CNV occurs, leading to a
somatic mosaicism in the CNV pattern, which is stable until at least the end of gastrulation and the formation of the germ layers. The ratio of this CNV
mosaicism is stable over a lifetime and across different cell types, except when other factors directly influence DNA stability.
doi:10.1371/journal.pone.0009591.g003

pod-FISH
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lines and the consent form was approved by the Ethics Committee

of Friedrich Schiller University Hospital Jena (internal code 1457-

12/04). Also EBV immortalized B-lymphoblastoid cell lines from

the same female individual were established at age of 25 and 45

and from one male at 30 and 50 years, respectively.

Cytogenetics
Metaphase chromosome preparations were obtained from

PHA-stimulated peripheral blood according to standard tech-

niques [23]. Cytogenetic analyses of all samples were performed

using GTG banding. The karyotypes were described according to

the International System for Human Cytogenetic Nomenclature

(ISCN, 2009) [24].

BAC Clone Selection for pod-FISH
BAC clones from CNV regions were selected by the ‘‘Database

of Genomic Variants’’ (http://projects.tcag.ca/variation/), pur-

chased from the Children’s Hospital Oakland Research Institute

(CHORI), Oakland, CA, USA, or kindly provided by the Sanger

Centre, UK. All BAC DNA was isolated, PCR amplified, and

labelled by nick translation (Roche, Karlsruhe, Germany) [5].

Chromosome Specific pod-FISH
Three chromosome-specific probe sets for chromosome 7,

altogether containing 15 BAC probes, were applied to the samples

from the subject with der(7)t(Y,7) and the parental samples (Table 1).

An LSI dual-color AML1/ETO probe (Abbott Molecular,

USA) was applied to the samples from the AML patient, according

to manufacturer’s instructions, together with BAC RP11-367L15

(19p13.2) according to standard procedures. One hundred nuclei

were analyzed for each bone-marrow sample.

The chromosome-specific pod-FISH set for chromosome 5

(RP11-812N8, 5p15.33; RP11-88L18, 5p15.1; RP11-551B22,

5q13.2; RP11-90A9, 5q14.1; RP11-346N7, 5q21.1; RP11-

55M16, 5q31.3) was applied to the samples from the individual

with der(5).

An all-chromosome-directed pod-FISH probe set (225 BACs)

was applied to analyze the PHA-stimulated peripheral-blood T

lymphocytes from subject 10. Five BACs (RP11-15J7, 2p11.2;

RP11-685N3, 2p11.2; RP11-365H22, 4q12; RP11-831B15,

14q11.2; RP11-645B7, 14q11.1) were chosen for application to

the samples from the 10 healthy individuals. All pod-FISH sets

were applied and evaluated on 20–30 metaphase spreads, as

previously reported [5]. Statistical analysis was performed using

the confidence interval of a proportion, one-way analysis of

variance and the all-pairwise multiple comparison procedure

(Holm–Sidak method). Statistical significance was defined as

P,0.05.

Supporting Information

Figure S1 pod-FISH within the variable T-cell receptor beta

locus in chromosomal region 7q34. Fluorescence in situ hybrid-

ization with four BAC probes (RP11-1141E10 [green], RP11-7P7

[red], RP11-466C10 [purple], RP11-157N15 [blue]) located in

the variable T-cell receptor beta locus in chromosomal region

7q34 revealed different signal constellations in phytohemaggluti-

nin (PHA)-stimulated peripheral blood and umbilical cord blood.

A) Deletion of RP11-1141E10 and partial deletion of RP11-

466C10. B) The simultaneous deletion of RP11-1141E10, RP11-

7P7, and RP11-466C10. C) No deletion in the 7q34 region was

visualized by FISH.

Found at: doi:10.1371/journal.pone.0009591.s001 (0.35 MB TIF)

Table S1 FISH analysis of the variable T-cell receptor beta locus

region using BAC DNA probes. * FISH analysis of BACs was not

performed in theses cases. ** Metaphase spreads [%] without

probe signal on both homologous chromosomes and with probe

signal on only one homologous chromosome. *** About 80 kb of

BAC RP11-157N15 covers the T-cell receptor beta variable

(TRBV) gene, 130 kb are located proximal. We found the BAC

signal on both homologous chromosomes 7 in all the metaphase

spreads studied. However, in ,50% of the cells, a different signal

intensity was observed on homologous chromosome. Start/

Stop[kb]: Start/Stop of BAC clones are with respect to the

UCSC genome browser, version March 2006. T cells from PB: T

lymphocytes from the PHA-stimulated peripheral blood of three

healthy probands. B cells: B lymphocytes from Epstein-Barr-virus-

immortalized B-lymphoblastoid cell lines from three healthy

probands. AF: Suspensions from the amniotic fluid of two

probands. T cells from UCB: T lymphocytes from PHA-

stimulated umbilical cord blood (UCB) from four probands.

Maternal contamination was excluded by the Kleihauer-Betke

test. AML patient after BMT: A bone-marrow suspension from a

patient with acute myeloid leukemia (AML) after bone-marrow

transplantation (BMT). CML patient after BMT: A bone-marrow

suspension from a patient with chronic myeloid leukemia (CML)

after BMT. B-ALL cases: Bone-marrow suspensions from patients

with B-cell acute lymphoblastic leukemia (B-ALL). T-ALL cases

(BM): Bone-marrow suspensions of patients with T-cell ALL (T-

ALL). T-ALL patient (PB): Peripheral blood suspension from a

patient with T-ALL. Sperm: Acetic acid-methanol-fixed sperm.

Because of the haploidy of the spermatozoids, there was only one

signal identified for each BAC in 100% of the cells. No deletion

was found.

Found at: doi:10.1371/journal.pone.0009591.s002 (0.12 MB

DOC)

Table S2 Results of pod-FISH analysis of B-lymphoblastoid cell

lines from subject 1 established with a time interval of 20 years. T-

test (P = ,0,01) was applied. To test for statistic significance.

Found at: doi:10.1371/journal.pone.0009591.s003 (0.17 MB

DOC)

Table S3 Sequence-mapped fragile sites resemble human copy

number variations (CNV).

Found at: doi:10.1371/journal.pone.0009591.s004 (0.13 MB

DOC)
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