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Abstract

Due to the complexity of the protocols and a limited knowledge of the nature of microbial communities, simulating
metagenomic sequences plays an important role in testing the performance of existing tools and data analysis methods
with metagenomic data. We developed metagenomic read simulators with platform-specific (Sanger, pyrosequencing,
Illumina) base-error models, and simulated metagenomes of differing community complexities. We first evaluated the effect
of rigorous quality control on Illumina data. Although quality filtering removed a large proportion of the data, it greatly
improved the accuracy and contig lengths of resulting assemblies. We then compared the quality-trimmed Illumina
assemblies to those from Sanger and pyrosequencing. For the simple community (10 genomes) all sequencing technologies
assembled a similar amount and accurately represented the expected functional composition. For the more complex
community (100 genomes) Illumina produced the best assemblies and more correctly resembled the expected functional
composition. For the most complex community (400 genomes) there was very little assembly of reads from any sequencing
technology. However, due to the longer read length the Sanger reads still represented the overall functional composition
reasonably well. We further examined the effect of scaffolding of contigs using paired-end Illumina reads. It dramatically
increased contig lengths of the simple community and yielded minor improvements to the more complex communities.
Although the increase in contig length was accompanied by increased chimericity, it resulted in more complete genes and a
better characterization of the functional repertoire. The metagenomic simulators developed for this research are freely
available.
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Introduction

The field of metagenomics examines the functional and

phylogenetic composition of microbial communities in their

natural habitats and allows access to the genomic content of the

majority of organisms that are not easily cultivatable [1]. This is

achieved through extraction of genomic DNA directly from

environmental samples followed by sequencing, assembly and data

analysis. Metagenomics has lead to the characterization of

microbial communities in a variety of habitats on the earth: for

example, the ocean [2–3], soil [4–5], hot springs [6] and acid-mine

drainage ponds [7–8]. More recently the human microbiome, in

particular the gastro intestinal tract [9–11], gained considerable

attention and large-scale metagenomic initiatives now promise to

characterize the microbiota in many different body sites with an

ultimate goal of understanding human health and disease (e.g.

[12]). The very first projects used Sanger sequencing, and even

though Sanger sequencing is used less and less due to the advent of

less expensive next generation sequencing, it still can reveal novel

biological concepts [11]. In addition, reanalysis of Sanger

sequencing data have led to a number of recent discoveries [13–

15]. Yet, the currently two most prominent sequencing methods

used for metagenomics are pyrosequencing [16–17] and most

recently Illumina sequencing [10] enabling studies of a wide array

of ecosystems, with the consequence of an exponential increase in

environmental sequencing [18].

The initial steps in metagenomic data analysis involve the

assembly of DNA sequence reads into contiguous consensus

sequences (contigs), followed by prediction of genes. The protein-

coding genes are then used to predict the functional repertoire

encoded in the metagenomes and the phylogenetic composition

can be estimated using a variety of methods [19]. Data analysis

pipeline tools like SmashCommunity [20], MG-RAST [21],

IMG/M [22] and Metarep [23], are complemented by numerous

special purpose tools, and they all need to be validated. As there is

no completely annotated metagenome available, simulations based

on genomic data provide the currently only feasible way to get

close to the truth. Indeed a number of simulations have already

been performed in metagenomics. Mavromatis and colleagues

[24] simulated metagenomic data by sampling sequencing reads

from isolate genomes and then benchmarked assembly and

annotation tools for Sanger-sequenced metagenomes. In addition,
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some simulator software has been developed that allows users to

create metagenomes with desired properties: MetaSim [25],

Grinder [26] and NGSfy [27].

Here we investigate the fidelity of metagenomic assemblies of

next generation sequencing methods (pyrosequencing and Illu-

mina) and compare these to classical Sanger sequencing as well as

to previous results. To enable this, we developed two new

metagenomic simulators iMESS (for Sanger and pyrosequencing)

and iMESSi (for Illumina) that not only provide realistic

sequencing reads, but also simulate errors and corresponding

quality values based on actual metagenomic data. The simulated

metagenomes were used to benchmark currently used assembly

protocols. Due to the current uprise of Illumina sequencing in

metagenomics, we also assessed the impact of quality control as

well as the use of scaffolding in metagenomics. The simulators are

freely available to allow the design of custom metagenomic data,

and in order to allow researchers to benchmark new tools using

these datasets the raw and assembled data are available at http://

www.bork.embl.de/,mende/simulated_data/.

Methods

iMESS
iMESS is a metagenomic simulator for Sanger sequencing as

well as pyrosequencing. Users can generate Metagenomes through

an easy-to-use website at http://www.bork.embl.de/software/

iMESS. First the user has to specify a desired community

structure, by selecting the number of organisms and the shape of

the rank abundance curve. Next the sequencing method and the

amount of sequencing (number of reads) have to be specified.

Using these parameters the simulator calculates how many reads

of each organism’s genome should be sequenced. iMESS then calls

ReadSim (http://ab.inf.uni-tuebingen.de/software/readsim/) to

generate reads with sequencing errors but without quality values.

Quality value models were determined by obtaining quality values

from actual metagenomic reads and fitting a function. For Sanger

sequences quality models were generated for 3 different data sets:

JGI [7] [28], TIGR [9], JAP [29]. For pyrosequencing one model

was determined based on reads from a real dataset (unpublished)

with a 250 bp median length. Read sequences and quality values

are written to a .fasta and a .qual file. For more details please refer

to the iMESS manual online.

iMESS_Illumina
iMESSi is a metagenomic simulator for the Illumina sequencing

technology. It can be downloaded at: http://sourceforge.net/

projects/cmessi/. Similar to iMESS the user first specifies what

kind of community should be simulated. The user also has to

specify a number of other parameters including the total number

of inserts, the read length, the insert size and standard deviation of

the read length. The actual number of inserts sampled from each

genome is calculated in a similar fashion as done in Metasim [25].

To generate realistic quality values we obtained quality values

from the MetaHIT gene catalog dataset [10] and clustered the

runs by quality values using Euclidean distances. This resulted in 3

different clusters for 75 bp reads and one for 44 bp reads. To

simulate errors within the reads the quality values are then

mapped to a ‘read’ extracted from a reference genome and then

random errors were generated at the probability as defined by the

equation below.

Q = 210 log10 (P/(12P)), where Q is the Phred quality score

and P is the error probability [30].

The 4 error models for 75 bp reads show large differences

in average error. The error models are available at: http://

sourceforge.net/projects/cmessi/, but users can easily generate

their own error models by extracting the quality values from any

Illumina sequencing run and converting them to Sanger scale

Phred scores in .qual format. This enables users to generate

realistic data for their sequencing machine and protocol and

enables simulations of Illumina reads from any sequencing read

length used by Illumina sequencing. The sequences and their

assigned quality values are returned as fastq formatted files [31].

Simulated Metagenomes
Metagenomic datasets were simulated for Sanger sequencing,

pyrosequencing, and Illumina sequencing. For each sequencing

technology, three metagenomes were simulated to mimic different

community complexities (10, 100 and 400 genomes). (Table 1,

Table S1, S2, S3). We generated metagenomes of the three

sequencing platform at different sequencing depths in order to

account for the price difference between the three sequencing

technologies and the usual sequencing effort for metagenomic

projects using each technology. Thus, about 15 times more base

pairs were generated for Illumina than for pyrosequencing, to

reflect the lower cost associated with Illumina sequencing [32],

and similarly 1.3 times more for pyrosequencing than for Sanger.

The datasets were assembled and analyzed using SmashCommu-

nity (pyrosequencing and Sanger) or a pipeline using freely

available tools (i.e fastx toolkit [33], SOAPdenovo [34] and parts

of the SmashCommunity pipline) (Illumina).

Quality Control
Sanger and pyrosequencing reads were quality trimmed using

lucy [35] and the lucyTrim.pl script from OCTUPUS (http://

Table 1. Simulated Raw Data for each Metagenome.

Simulated Metagenome MG1 MG2 MG3 MG4 MG5 MG6 MG7 MG8 MG9

Sequencing technology Illumina Sanger pyrosequencing

Number of genomes 10 100 400 10 100 400 10 100 400

Number of reads (Million) 53.33 53.33 53.33 0.25 0.25 0.25 1.00 1.00 1.00

Amount sequence (Mb) 4000 4000 4000 200 200 200 255 255 255

Average read length (bp) 75 75 75 800 800 800 255 255 255

For each sequencing technology (Illumina, Sanger, pyrosequencing), three different metagenomes were simulated for different community complexities (10 genomes,
100 genomes, 400 genomes). The amount of sequence generated for each sequencing technology was based on the current price for each technology as well as the
usual amount generated. Reads and quality values for Illumina were generated using the freely available simulator iMESSi, and reads and quality values for Sanger and
pyrosequencing were generated using iMESS which is available through an easy-to-use web interface.
doi:10.1371/journal.pone.0031386.t001

Comparison of Assembly of Simulated Metagenomes
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octupus.sourceforge.net). Illumina reads were quality trimmed and

filtered using the procedure described in [11]. Specifically, the 59-

ends of the reads were trimmed so that the abundance of each base

(A,C,T,G) per position was within 2 standard deviations of the

average across all cycles. Then, all bases with a quality score less

than 20 were trimmed off the 39-ends. Lastly, all reads that were

shorter than 35 bases or had a median quality score below 20 were

removed.

Mapping of Illumina Reads to Original Genomes
Trimmed and untrimmed reads were mapped to the original

genomes with MOSAIK 1.1.0021 (http://bioinformatics.bc.edu/

marthlab/Mosaik) using the following parameters: ‘‘-a all -m all -

hs 15 -mm 2 -act 35’’. This software was also used to calculate the

coverage of the genomes.

Assemblies
All simulated metagenomic datasets using Sanger and pyrose-

quencing technologies were assembled using SmashCommunity

[20]. The Sanger sequencing data was assembled using Arachne

v3.1 [36] with SmashCommunity standard parameters. Pyrose-

quencing datasets were assembled using Celera [37] assembler

with SmashCommunity standard parameters.

The Illumina datasets were assembled using SOAPdenovo 1.05

[33] using following parameters: ‘‘-K 23 -L 70 -M 3 -u -R -F’’. To

assess the effect of quality filtering in metagenomic data analysis of

Illumina data, we assembled the datasets with and without quality

filtering, as described above.

To determine which read was incorporated into which contig

we used this information provided by SmashCommunity for all

datasets processed with this tool. In order to get this information

for the Illumina datasets we mapped the reads against the contigs

using SOAPaligner 2.20 (Parameters: ‘‘-r 0 -v 2 -M 2’’) [38].

Measures of Chimerism
Chimeric contigs are those contigs that combine reads originating

from more than one genome. This definition was originally based on

assemblies of Sanger reads. In contrast to assemblies of Sanger reads,

in assemblies of Illumina data reads can be assigned to more than

one contig as an entire read may be identical (or nearly identical) to

two reference genomes. Therefore to adjust the definition of a

Chimeric contig to Illumina data, contigs were only considered to be

chimeric if they contained uniquely-mapping reads that originate

from more than one genome. Uniquely-mapping reads are those

that are only mapped to one contig, as opposed to being mapped to

multiple contigs. For all chimeric contigs we calculated the degree of

chimericity as described in [24]. Specifically, the degree of

chimericity is the ratio of the number of reads that do not originate

from the species which makes up most of the reads in the contig over

the total number of reads in that contig.

Contig Score
In order to determine how accurately contigs represent the

corresponding genomes, we defined the Contig Score. To

calculate this we used BLASTN to map contigs to the original

genomes. We then extracted the percent identity for the best HSP

as well as the percent of each contig covered by its HSP. The

Contig Score was then calculated by multiplying these two values

and normalized to be in a range from 0 to 100.

Functional Annotation and Analysis
Functional annotation and analysis was done using Smash-

Community [20]. Briefly, gene prediction was performed using

MetaGeneMark [39], and then the protein translations of the

predicted genes were assigned to a COG (Cluster of Orthologous

Group) by performing a BLASTP against the eggNOG2 database

(single best hit, bit score .60) [40]. The abundance of each COG

in each metagenome was determined using scripts in SmashCom-

munity. The abundances were normalized to produce probability

distributions. To determine the similarity or difference between

the COG abundance distributions, Principal Coordinate Analysis

(PCoA) was performed using a distance metric related to Jensen-

Shannon Divergence (JSD) [11]. For a complementary ordination

analysis, Principal Component Analysis (PCA) was performed

using the COG abundance distribution matrix using R [41]. In

addition, the abundance of each COG, as determined from the

metagenomic assembly and annotation, was plotted against the

abundance of each COG as expected from the input genomes and

Pearson correlation coefficients were determined.

Results

Importance of Quality Control for Illumina Data
Both metagenomic simulators presented here generate

sequences and corresponding quality values that were modeled

on actual metagenomic data. Quality values were originally

developed for Sanger sequencing to estimate the accuracy of

each base call [42]. Most assemblers for Sanger and pyrose-

quencing use quality values as part of the assembly process (e.g.

Phrap (http://www.phrap.org/), Arachne [36], JAZZ [43],

Celera [37], Newbler [44]). However, the most commonly used

assemblers for Illumina data (SOAPdenovo [33], Velvet [45],

SSAKE [46] do not use quality values for assembly. Thus there

is no standard treatment for poor quality bases of Illumina

reads. To evaluate the impact of quality-based pre-processing of

reads, the 3 Illumina metagenomic datasets were assembled with

and without quality control. We chose quality control which

included trimming the 59-end based on base frequency

distributions, the 39-end based on quality scores, and then

removal of reads based on median quality scores and minimum

length. This is more rigorous than the quality control performed

with the first published Illumina metagenomic data set [10].

Although 13–16% of the reads and 24–27% of the base pairs

were removed by quality trimming, the accuracy of the data was

greatly improved (Table 2). To assess how well the reads

represent the genomic sequences present in the metagenome,

the reads were mapped back to the source genomes allowing for

a maximum of 2 mismatches. Even though the total number of

reads was lower in the trimmed dataset, the total number of

reads that mapped to the original genomes doubled. The quality

trimming of the reads also produced a strong improvement in

the assemblies (Figure 1, Table 2). Notably, for the 10 species

metagenome, prior to quality trimming no contigs longer than

500 base pairs (bp) were obtained, while after trimming 13799

contigs longer than 500 bp were assembled with an average

length of 2332 bp. For the 100 genomes metagenome the

number of contigs longer than 500 bp increased by almost 3-

fold and the N50 more than doubled. While, for the 400

genomes metagenome improvements to the assembly due to

quality filtering were more modest. Increasing the number of

contigs longer than 500 base pairs will strengthen the ability to

predict and annotate protein-coding genes by both using

homology- and neighborhood-based [47] methods. Assembly

of the trimmed dataset clearly outperforms the assembly of the

untrimmed dataset demonstrating that stringent quality control

as performed here should be used for real metagenomic

sequencing data in order to enhance results.

Comparison of Assembly of Simulated Metagenomes

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e31386



Comparison of Assemblies from Different Sequencing
Methods

We used different assembly programs for reads generated by

each sequencing technology in order to account for the differences

between them. Therefore, the following is a comparison between

assemblies produced from different sequencing methods, along

with a chosen pipeline of assembly software with specified

parameters. We used parameters which are optimized for

metagenomic assembly as well as for each technology and that

were used in previous studies [11] [10].

A comparison of the assemblies shows that contig size length

distributions differ depending on the community complexity and

the sequencing technology (Figure 2, Table 3). For simple

communities (10 genomes) all sequencing platforms produced a

similar total sum of contig lengths, but differed in the distribution

of contig lengths. Although pyrosequencing had the longest N50

(N50 is defined as the length N for which 50% of all bases are

represented in fragments of length L,N) [48], Sanger sequencing

produced the largest number of contigs greater than 500 bp. For

more complex communities (100 genomes), Illumina reads

resulted in by far the best assembly with 8 times the number of

contigs assembled than as for the Sanger sequences (the next best),

the largest proportion of long contigs, and over 6 times more genes

with functional annotations. For the most complex community

(400 genomes) there was very little assembly using any technology.

Although there was no assembly of Sanger reads into contigs, the

Sanger reads still represent the best ‘assembly’ with 10 times more

fragments over 500 bp, than the Illumina assembly and over 10

times more genes with functional annotation. These differences

can be attributed to the differences in read length and especially

sequencing depth, but both parameters are intrinsic to the

different sequencing technologies., as the cost of the sequencing

Table 2. Comparison of Reads and Assemblies for Illumina Data with and without Quality Control.

Metagenome 10 genomes 100 genomes 400 genomes

raw
qualitly
filtered

fold
change raw

quality
filtered

fold
change raw

quality
filtered

fold
change

raw data

Bases (Mbp) 4000 2908.95 0.73 4000 3031.64 0.76 4000 3031.68 0.76

Reads (Million) 53.33 44.99 0.84 53.33 46.47 0.87 53.33 46.47 0.87

Average Read Length 75.00 64.66 0.86 75.00 65.24 0.87 75.00 65.24 0.87

accuracy of raw data

Mapped Reads (max. 2 MM) 23.36 42.99 1.84 25.48 44.56 1.75 25.48 44.56 1.75

% mapped of total 43.80 95.55 2.18 47.78 95.90 2.01 47.77 95.89 2.01

% of ref genome covered 100 100 1.00 98.2 98.7 1.01 75.3 87.8 1.17

contig lengths in assembly

Number of Contigs .500 bp 0 13799 n/a 65813 183528 2.79 10154 23794 2.34

Average Contig Length n/a 2332 n/a 647 1291 2.00 589 679 1.15

N50 n/a 3240 n/a 629 1496 2.38 567 635 1.12

Longest Contig 354 22725 n/a 2448 43111 17.61 1601 5854 3.66

The table is divided into three sections. The upper section describes the raw data before and after quality control. The second, describes the accuracy of the data as
determined by mapping the reads back to the reference genomes (allowing for 2 mismatches). The last section compares the length of the contigs that result from
assembly of the raw and trimmed data. N50 is defined as the length N for which 50% of all bases are represented in fragments of length L,N. The degree of chimericity
is the ratio of the number of reads that do not originate from the species which makes up most of the reads in the contig over the total number of reads in that contig.
The Contig Score represents the percent identity between a contig and its corresponding reference genome. The percent identity between the two (from BLAST) is
multiplied by the percent of each contig covered by its HSP and normalized to be in a range from 0 to 100.
doi:10.1371/journal.pone.0031386.t002

Figure 1. Comparison of Assemblies of Illumina Data with and without Quality Control. Contig length histograms illustrate the number of
contigs within a certain size fraction for assemblies of Illumina reads with quality filtering (red) and without quality filtering (purple). Contig lengths
were compared for assemblies of different community complexities (10 genomes, 100 genomes, 400 genomes). Only contigs greater than 500 bp are
shown, the x-axis is log scale. There was a strong improvement in the assemblies with pre-assembly quality control of the reads.
doi:10.1371/journal.pone.0031386.g001

Comparison of Assembly of Simulated Metagenomes
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technology is directly related to the sequencing depth. All of the

sequencing technologies perform comparably when the coverage

per organism is relatively high as in the 10 genomes metagenome.

But for the more complex communities (100 genomes) Illumina

performs better due to the greater sequencing depth achieved.

However, for the metagenomes with 400 genomes even the

sequencing depth achieved with Illumina does not make up for the

lower coverage of each genome and Sanger performs well due to

the long read lengths.

The definition of a chimeric contig arose from analysis of

Sanger assemblies and describes a contig that combines reads

originating from more than one genome [24]. In this case, reads

that originate from two different genomes may be combined into

one contig based on a short region of homology between the two,

while the majority of the contig would match one of the reference

genomes better than the other. However for Illumina reads the

definition of a chimeric contig is not as clear. As Illumina reads are

so short, an entire read may be identical (or nearly) to two

reference genomes. In addition, most Illumina assembly software

allows reads to be assigned to more than one contig. Thus, for

Illumina data we defined a contig as chimeric if it contains

uniquely-mapped reads that originate from more than one

genome; where uniquely mapped reads are those that are only

mapped to one contig, as opposed to being mapped to multiple

contigs. Moreover, in order to assess the accuracy of a contig

without using the concept of chimericity, which may not be so

informative for Illumina data, we defined the term ‘contig score’ to

represent the sequence identity between a contig and its

corresponding genome. The contig score can vary between 0

and 100, with 100 being the best value.

The percentage of chimeric contigs was lowest in Sanger

sequencing, while pyrosequencing and Illumina had a much

Figure 2. Comparison of assemblies from different sequencing technologies. a) Contig Length Distribution. Histograms of the contig
lengths illustrate the number of contigs within a certain size fraction for assemblies of Illumina reads with quality filtering (red), Sanger sequenced
reads (yellow) and reads from pyrosequencing (blue). Only contigs greater than 500 bp are shown, the x-axis is log scale. Assemblies were generated
for different community complexities (10 genomes, 100 genomes, 400 genomes). b) Overall Accuracy of the Contigs. The overall accuracy of the
contigs is summarized using different measures of chimericity. Bars to the left illustrate the percentage of all of the contigs that are chimeric, bars in
the middle show the percentage of all of the contigs that have a Contig Score less than 95%, and to the right contigs that have a Contig Score less
than 99%. Contig Score represents the percent identity between the contig and the derived reference genome. Contigs from Illumina reads are red,
contigs from Sanger reads are yellow and contigs from pyrosequencing are blue. In general there was a slightly higher proportion of Illumina contigs
that were chimeric, however they had higher contig scores. c) Contig Accuracy across Contig Lengths. These combined strip plots show the
degree of chimericity (upper plot) and contig score (lower plot) for each contig in the assemblies, each dot represents one contig. They are grouped
into size bins. The degree of chimericity is the proportion of reads in a contig that are derived from the ‘wrong’ genome and thus make the contig
chimeric. Contig Score represents the percent identity between the contig and the derived reference genome. Again contigs from Illumina
assemblies are in red, from Sanger assemblies are in yellow and from pyrosequencing assemblies are in blue. For all sequencing technologies and
communities, longer contigs are more accurate.
doi:10.1371/journal.pone.0031386.g002
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higher percentage of chimeric contigs (Table 2, Figure 2).

However, the degree of chimericity (percentage of reads from

‘‘wrong’’ genomes [24]) was on average higher for Sanger

sequencing than the other sequencing technologies, with the effect

being more pronounced in the least complex community, and

almost negligible in the most complex community. The degree of

chimericity was clearly dependent on the contig length for all

sequencing methods, with shorter contigs having a much higher

degree of chimericity. The percentage of chimeric contigs and the

degree of chimericity both increase with increasing community

complexity. This shows that some contig accuracy characteristics

known from Sanger sequencing [24] also hold true for next

generation sequencing methods.

By comparing the contig scores to the chimericity analysis, it is

clear that chimeric contigs can still resemble the original genomes

(Figure 2, Panel B). This is especially true for Illumina contigs that

had overall better contig scores than other sequencing method for

all community complexities. Conversely, pyrosequencing pro-

duced assemblies with the lowest contig scores. In agreement with

the relationship between contig length and chimericity, we also

found a proportional relationship between contig length and the

contig score in most cases, delivering additional evidence that

longer contigs are indeed more reliable. However, for the 10

genome community the trend was not as clear for the contigs from

pyrosequencing, and a number of long contigs had a low contig

score.

The use of Scaffolds and Scaftigs in Illumina Assemblies
The assembly of reads into contigs usually does not lead to

completely assembled genomes, hence scaffolding is used to

combine contigs and place them within context of their genomic

location [49]. Scaffolds are constructed by linking contigs using

information from paired end reads. During this process a number

of unknown bases, or gaps, are usually found between the

sequences of the linked contigs. Some scaffolding tools try to fill

this gapped-region with unused reads. Unknown bases that remain

between the contigs in the scaffold will be represented by Ns. To

use the information obtained by scaffolding, scaftigs can be

constructed by extracting the contiguous sequences that lack

unknown bases (Ns). Scaffolding is especially useful when

assembling short reads generated using next generation sequenc-

ing technologies since repeats are harder to resolve in this case.

The main advantage of scaftigs over contigs is an increase in

fragment lengths and scaftigs have been proven to be useful in

metagenomic data analysis [10].

We used simulated Illumina data to survey the effect of

scaffolding on assemblies of different communities. Fragment

lengths increase with scaffolding. This is most pronounced in the

low complexity metagenomes (10 genomes) where the N50

increases 10-fold from 3240 to 35893, while there is hardly a

difference in the high complexity (400 genomes) dataset (N50

improves from 631 to 690) (Table 4, Figure 3). Although the use of

scaffolds increases contig lengths, a larger proportion of scaftigs

were chimeric than contigs in simulations of all community

Table 3. Comparison of Assemblies from Reads of Different Sequencing Technologies.

Number of Genomes 10 100 400

Sequencing Illumina Sanger pyro Illumina Sanger pyro Illumina Sanger pyro

contig lengths1

Number of Contigs
.500 bp

13799 15368 6046 183528 21977 14035 23634 249989 1151

Sum of Contig
Lengths (Mbp)

32.18 34.88 33.26 236.91 28.33 11.71 16.05 167.89 0.81

N50 (bp) 3240 2693 9198 1496 1221 809 636 671 640

Longest Contig (kb) 22.73 13.70 119.83 43.11 4.83 7.26 5.85 0.77 2.81

contig accuracy

% of contigs that are
chimeric

4.98 0.01 0.36 9.79 2.98 27.10 37.08 02 47.15

Average degree of
chimericity (%)

1.56 38.04 15.28 18.25 44.56 35.67 41.50 02 47.89

% of contigs with
ContigScore ,95

0.03 0.24 1.62 0.11 0.84 5.50 4.51 0.38 26.80

functional annotation

Number of genes 40173 52550 40201 359969 61839 26369 33449 413779 1587

Number of complete
genes

21276 28841 31628 106024 30899 9228 3267 102121 542

Number of genes
with OG annotation

35713 42878 35399 305217 48922 20992 27118 293047 1002

1- for Sanger reads there were no contigs assembled from combining more than one read, therefore the term contigs represents Sanger reads that were longer than
500 bp.

2– as there were no contigs assembled from more than one read, then there cannot be any ‘chimeric’ contigs.
This table compares assembly statistics for assemblies of reads from quality-trimmed Illumina reads, Sanger reads, and pyrosequencing reads (quality trimming was
performed by assembly software). The upper portion of the table compares different statistics related to contig lengths, and the lower portion compares statistics
related to the accuracy of the contigs. N50 is defined as the length N for which 50% of all bases are represented in fragments of length L,N. The degree of chimericity is
the ratio of the number of reads that do not originate from the species which makes up most of the reads in the contig over the total number of reads in that contig.
The Contig Score represents the percent identity between a contig and its corresponding reference genome. The percent identity between the two (from BLAST) is
multiplied by the percent of each contig covered by its HSP and normalized to be in a range from 0 to 100.
doi:10.1371/journal.pone.0031386.t003
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complexities. The degree of chimercity was also higher in scaftigs

than in contigs for all length bins (Figure 3). While the effect of

scaffolding seems to be detrimental when looking at chimericity,

the effect is small when comparing the actual sequence of scaftigs

and contigs to the original genomes. The percentage of sequences

having a contig score below 95 slightly increases for all 3

community complexities; however, the median contig score was

very similar for scaftigs and contigs (Table 4). In conclusion,

scaffolding of Illumina data represents a tradeoff between

increased fragment lengths and accuracy, and therefore might

be more useful when mapping fragments for function assignment

purposes but less so when sequence identify is used to quantify the

distance to reference genomes.

Functional Composition of Simulated Metagenomes
To determine if better assembly parameters such as longer

contigs result in assemblies that more accurately represent the

functional composition of the community, we compared the

functional content of the metagenomes to the functional repertoire

expected from the input genomes. For the 10 and 100 genome

metagenomes, where the genomes had higher coverage, the actual

COG abundances determined from the assemblies correlated well

with the expected COG abundances (Figure 4A). For the more

complex communities (100 and 400 genomes) the Illumina scaftigs

had slightly better correlations than the Illumina contigs. This

indicates that the positive impact of increased fragment length

outweighs the minor increases in the number of assembly errors.

In addition we performed principal component analysis and

principal coordinate analysis of JSD distances to determine how

the use of different technologies might affect functional ordination

analyses. Both ordination analyses showed that for all sequencing

technologies the low complexity metagenomes (10 genomes) were

similar in functional content to each other as well as to the

expected (Figure 4B). For the medium complexity metagenomes

(100 genomes), the Illumina reads produced assemblies that were

very similar to expected, with the Sanger assembly also being close

and the pyrosequencing assembly being the most different from

expected. For the high complexity community (400 genomes) the

Illumina and pyrosequencing metagenomes appear to be quite

divergent from the expected functional content. And the Sanger

reads provided the best representation of the functional content

with the Sanger assembly appearing relatively similar to expected

in the PCoA. One of the main reasons that pyrosequencing could

not accurately represent the overall functional composition was the

lower number of genes that were annotated (Table 3). In addition,

for all metagenomes the Illumina contigs and Illumina scaftigs had

very similar functional compositions. Overall, the functional

analysis shows that better assemblies (eg. more complete genes)

do actually result in better functional characterization of a

metagenome.

Discussion

The first step in any metagenomic data analysis should be raw

data treatment. This includes quality control and removal of

contamination (eg. human contamination in metagenomic studies

of the human gut). Tools for NGS quality control like the FASTX

toolkit [33], SolexaQA [50] or PrinSeq [51] are readily available.

However, there is currently no standard protocol for how the

quality values should be used in read pre-processing. Our results

show the importance of good quality control as the Illumina

assemblies greatly improved after rigorous quality filtering and

trimming.

After this initial step there are a number of analyses that one can

perform, but to decrease the complexity of the data, the quality

controlled reads are usually assembled into contigs. Our

comparison of assemblies from different sequencing technologies

reveals that each assembly has different characteristics depending

on community composition and sequencing technology. The

different sequencing technologies performed similarly for the low

Table 4. Comparisons of Illumina Assemblies of Contigs and Scaftigs.

Number of Genomes 10 100 400

Sequencing
Illumina
contigs

Illumina
scaftigs

fold
change

Illumina
contigs

Illumina
scaftigs

fold
change

Illumina
contigs

Illumina
scaftigs

fold
change

contig lengths

Number of Contigs .500 bp 13799 1900 0.14 183528 152230 0.83 23634 32496 1.37

Sum of Contig Length (Mbp) 32.18 33.34 1.04 236.91 33.34 0.14 16.05 24.19 1.51

N50 (bp) 3240 35893 11.08 1496 2200 1.47 636 690 1.08

Longest Contig (kb) 22.73 195.65 8.61 43.11 573.10 13.29 5.85 11.70 2.00

contig accuracy

% of contigs that are chimeric 4.98 27.74 5.57 9.79 16.82 1.72 37.08 41.50 1.12

Average degree of chimericity (%) 1.56 1.21 0.78 18.25 19.03 1.04 41.50 42.96 1.04

% of contigs with ContigScore ,95 0.03 2.05 70.81 0.11 0.42 3.82 4.51 5.03 1.11

functional annotation

Number of predicted genes 40173 32834 0.82 359969 358473 1.00 33449 47667 1.43

Number of complete genes 21276 30690 1.44 106024 144364 1.36 3267 6000 1.84

Number of genes with OG annotation 35713 29827 0.84 305217 305823 1.00 27118 39235 1.45

This table compares assembly statistics for assemblies of Illumina data that result in contigs and those for which scaftigs were created. N50 is defined as the length N for
which 50% of all bases are represented in fragments of length L,N. The degree of chimericity is the ratio of the number of reads that do not originate from the species
which makes up most of the reads in the contig over the total number of reads in that contig. The Contig Score represents the percent identity between a contig and its
corresponding reference genome. The percent identity between the two (from BLAST) is multiplied by the percent of each contig covered by its HSP and normalized to
be in a range from 0 to 100.
doi:10.1371/journal.pone.0031386.t004
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complexity community. For the more complex community (100

genomes), the Illumina sequences assembled a much greater

length of contigs resulting in more complete genes. This is due to

the greater sequencing depth achieved as the price per base is

much less for Illumina sequencing than pyrosequencing or Sanger.

For the most complex community none of the sequencing

technologies assembled many reads into contigs. However, due

to their length the Sanger reads still had many sequences greater

than 500 bp. Earlier metagenomic simulation studies focused on

the chimericity of contigs concluding that currently used

assemblers need to improve to be useful for metagenomics [24].

However, this term that originated from Sanger sequencing may

not be as applicable to IIlumina data. This is because Illumina

reads are so short and may actually represent regions that are

identical between two organisms, and because assembly of

Illumina reads often results in reads being assigned to more than

one contigs. We therefore need to asses new ways to determine the

accuracy of Illumina assemblies. Accordingly, we defined the term

‘Contig Score’ to quantify the divergence of the contigs from the

original genomes. Our results show that for all sequencing

technologies and community complexities the vast majority of

the contigs diverge by less than 5% from the original genomes.

The Illumina dataset excelled using this measure showing the

usefulness of Illumina sequencing data in metagenomics. The

reliability of most contigs is reflected by the fact that the functional

repertoire of the low and medium complexity metagenomes

accurately represents the expected functional repertoire. This is

also because the amount of sequence produced allowed for all of

the sequencing technologies to provide enough coverage of each

genome. For the most complex community, where there was low

coverage of each genome, assemblies from Illumina and

pyrosequencing failed to represent the expected functional

Figure 3. Comparison of assemblies of Illumina contigs and Illumina scaftigs. Scaffolds are constructed by linking contigs using
information from paired end reads, during this process a number of unknown bases are usually found between the sequences of the linked contigs.
To use the information obtained by scaffolding, Scaftigs can be constructed by extracting the contiguous sequences that lack unknown bases (Ns). a)
Contig Length Distribution. Histograms of the contig lengths illustrate the number of contigs within a certain size fraction for assemblies of
Illumina contigs (red) and Illumina scaftigs (light blue). Only contigs greater than 500 bp are shown, the x-axis is log scale. Assemblies were generated
for different community complexities (10 genomes, 100 genomes, 400 genomes). b) Overall Accuracy of the Contigs. The overall accuracy of the
contigs is summarized using different measures of chimericity. Bars to the left illustrate the percentage of all of the contigs that are chimeric, bars in
the middle show the percentage of all of the contigs that have a Contig Score less than 95%, and to the right contigs that have a Contig Score less
than 99%. Contig Score represents the percent identity between the contig and the derived reference genome. Illumina contigs are in red Illumina
scaftigs are blue. c) Contig Accuracy across Contig Lengths. These combined strip plots show the degree of chimericity (upper plot) and contig
score (lower plot) for each contig in the assemblies, each dot represents one contig. They are grouped into size bins. The degree of chimericity is the
proportion of reads in a contig that are derived from the ‘wrong’ genome and thus make the contig chimeric. Contig Score represents the percent
identity between the contig and the derived reference genome. Again Illumina contigs are in red and Illumina scaftigs are in blue.
doi:10.1371/journal.pone.0031386.g003
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Figure 4. Comparison of the functional repertoire of the metagenomes to each other and to the expected. a) Correlations between
expected and actual COG abundance. Dotplots compare the expected and actual abundance for each COG, with the x-axis displaying the COG
abundances as expected from the input genomes and the y-axis displaying the COG abundances as determined from assembly and annotation of the
simulated metagenomes. The black line shows the 1:1 correlation. The Pearson correlation coefficients are displayed for each dataset. b) Principal
Coordinate Analysis (PCoA) and Principal Component Analysis (PCA). The COG abundance profiles were compared to each other using
Jensen-Shannon divergence and the distance matrix was then analyzed plotted using PCoA. The COG abundance profiles were analyzed plotted
using PCA. The dots are colored by sequencing method: Illumina contigs (red), Illumina scaftigs (light blue), Sanger (yellow) and pyrosequencing
(blue).
doi:10.1371/journal.pone.0031386.g004
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composition of the metagenomes, as there were very few complete

genes annotated. However, the Sanger reads approximated the

expected functional composition reasonably well as the length of

the reads allowed for accurate functional annotation. For the

pyrosequencing simulations 250 bp was used as the average read

length. Currently, the GS FLX Titanium system can deliver reads

as long as 400 bp, this would probably improve the assemblies.

The ability of all NGS sequencing technologies to fully capture the

functional repertoire of complex communities will also improve as

technology developments might lower prices allowing for deeper

sequencing.

By using paired end information available in most NGS

technologies, the fragment length of an assembly can be increased

by gap-filling and scaffolding of contigs. Our results show that

scaffolding is a good way to increase fragment lengths. And

although scaffolding increased chimeras and decreased the Contig

Score, the functional profiles of the metagenomes derived from

contigs and those derived from scaftigs were virtually indistin-

guishable, with the COG abundance profiles of the scaftig-

metagenomes correlating slightly better with the expected.

Currently, Illumina sequencing technology can produce the

greatest yield at the lowest price [32], but as of now has not been

extensively used for metagenomics. Our study of simulated

metagenomes shows that Illumina data can be used to obtain

assemblies that, for the low and medium complexity metagenomes

in this study, are superior to those from pyrosequencing and

Sanger sequencing, provided a rigorous quality control of reads

prior to assembly. However, the assembly performance is coupled

to the underlying community structure, and thus simulations will

aid in choosing the optimal sequencing technology for a

microbiome of interest. In addition, the results are highly

dependent on the sequencing depth and read lengths which are

increasing for next-generation sequencing technologies, thus it is

likely that they may perform even better for more complex

metagenomes in the future.
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