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Abstract

Background: Recently, a pathway-based approach has been developed to evaluate the cumulative contribution of the
functionally related genes for genome-wide association studies (GWASs), which may help utilize GWAS data to a greater
extent.

Methods: In this study, we applied this approach for the GWAS of basal cell carcinoma (BCC) of the skin. We first conducted
the BCC GWAS among 1,797 BCC cases and 5,197 controls in Caucasians with 740,760 genotyped SNPs. 115,688 SNPs were
grouped into gene transcripts within 20 kb in distance and then into 174 Kyoto Encyclopedia of Genes and Genomes
pathways, 205 BioCarta pathways, as well as two positive control gene sets (pigmentation gene set and BCC risk gene set).
The association of each pathway with BCC risk was evaluated using the weighted Kolmogorov-Smirnov test. One thousand
permutations were conducted to assess the significance.

Results: Both of the positive control gene sets reached pathway p-values,0.05. Four other pathways were also significantly
associated with BCC risk: the heparan sulfate biosynthesis pathway (p = 0.007, false discovery rate, FDR = 0.35), the
mCalpain pathway (p = 0.002, FDR = 0.12), the Rho cell motility signaling pathway (p = 0.011, FDR = 0.30), and the nitric
oxide pathway (p = 0.022, FDR = 0.42).

Conclusion: We identified four pathways associated with BCC risk, which may offer new insights into the etiology of BCC
upon further validation, and this approach may help identify potential biological pathways that might be missed by the
standard GWAS approach.
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Introduction

Recently, genome-wide association studies (GWASs) have

often been conducted to investigate the genetic susceptibility to

complex diseases, including skin cancer [1]. Cancer of the skin

(including both melanoma and non-melanoma skin cancers) is

the most common form of cancer, accounting for more than

50% of all cancers. Basal cell carcinoma (BCC) accounts for

approximately 80 percent of all non-melanoma skin cancers,

and its incidence is increasing [2]. Although GWASs have

identified several new loci associated with BCC [3,4], the most

significant SNPs that fulfilled a stringent statistical ‘‘genome-

wide’’ significance criterion often account for only a small

proportion of genetic susceptibility. More attention should be

paid to the rest of the genetic information, which may offer a

deeper understanding of the genetics of complex diseases [5].

Combining the modest association signals in the GWAS data

with information on biological pathways and networks, the

emerging pathway-based approaches are designed to utilize the

GWAS data to a greater extent and are likely to yield new

insights into disease etiology [6].

It has been suggested that multiple susceptibility genes for a

single disease tend to have some related functions or aggregate in

certain pathways [7]. For example, some genes associated with

BCC risk are related to pigmentation [1]. The pathway-based

approach, which evaluates the cumulative contribution of the

functionally related genes, may help uncover the associations of

genes with small effect sizes that cluster within common biological

pathways [6]. Using an approach based on the gene-set

enrichment analysis algorithm [8], pathway analyses have been

applied to the GWASs of several complex diseases, and some novel

candidate disease-susceptibility pathways have been revealed

[9,10,11,12].

Here we report on the results of a pathway analysis on GWAS

of BCC to identify the biological pathways associated with BCC

risk, which may provide new insights into the etiology of BCC.
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Materials and Methods

BCC GWAS
Ethics Statement. This study was approved by the Human

Research Committee at the Brigham and Women’s Hospital

(Boston, MA) with written informed consent from all participants.

Description of Study Populations. The BCC GWAS

comprised 1,797 BCC cases and 5,197 controls, which were

from four pre-existing GWAS sets [13,14]. The description of

BCC GWAS dataset was presented in a manuscript currently in

press [15]. Briefly, the four component GWAS sets reflect the

type 2 diabetes case-control study nested within the Nurses’

Health Study (T2D_NHS, BCC cases = 665, BCC

controls = 2,162), the type 2 diabetes case-control study nested

within the Health Professionals Follow-up Study (T2D_HPFS,

BCC cases = 597, BCC controls = 1,555), the coronary heart

disease case-control study nested within the NHS (CHD_NHS,

BCC cases = 253, BCC controls = 765), and the coronary heart

disease case-control study nested within the HPFS

(CHD_HPFS, BCC cases = 282, BCC controls = 715). All the

cases were self-reported BCC patients, and we excluded those

who had diagnosis of other common cancers before diagnosis of

BCC based on common cancers reported by the National

Cancer Institute and American Cancer Society. For BCC

controls, we also excluded those individuals who had diagnosis

of BCC or other common cancers. Those common cancers

included melanoma, SCC, breast cancer, endometrial cancer,

ovarian cancer, colorectal cancer, bladder cancer, lung cancer,

pancreatic cancer, kidney (renal cell) carcinoma, leukemia, Non-

Hodgkin Lymphoma, thyroid cancer, and oral cancer.

Overlapping individuals among the four GWAS sets were

removed. All the individuals in our study are of European

ancestry and live in the United States. The study protocol was

approved by the Institutional Review Boards of Brigham and

Women’s Hospital and the Harvard School of Public Health.

Detailed descriptions of the study populations for each study are

presented in the Methods S1.

Genotyping and Quality Control. We used the genotype

data from four pre-existing GWAS sets (T2D_NHS, T2D_HPFS,

CHD_NHS, and CHD_HPFS) [13]. The genotyping was

previously conducted using the Affymetrix 6.0 array and the

information on genotyping and quality control was previously

described [13]. For each study, the detailed information was

summarized in the Methods S1.

Association analysis. Associations between each SNP and

BCC risk were determined using a multivariable logistic regression

model; Age and the first three principal components of genetic

variation (Methods S1) were adjusted in the model within each of

the four sets. The case-control status of T2D and CHD was also

adjusted in the sensitivity analysis. For each SNP, within-cohort

association results were combined in an inverse variance–weighted

meta-analysis using METAL software [16].

Pathway data construction
We collected pathway data from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and BioCarta databases; 174

KEGG pathways and 205 BioCarta pathways that contain at least

10 but at most 200 genes represented by qualified SNPs were

tested. The cutoff of 10–200 genes was selected as a good balance

for gene sets to reduce the multiple-testing issue and to avoid

testing overly narrow or broad functional categories. We also

designed two positive control gene sets, the pigmentation gene set

and BCC risk gene set, to test this approach. We selected the genes

based on information gathered by the previous GWAS studies on

the pigmentation traits and BCC risk. The pigmentation gene set

included SLC45A2, IRF4, EXOC2, TYPR1, TPCN2, TYR, KITLG,

SLC24A4, OCA2, MC1R, ASIP, HERC2; and the BCC risk gene set

included PADI6, RHOU, SLC45A2, TERT, CLPTM1L, KLF14,

CDKN2A, CDKN2B, TYR, KRT5, MC1R, ASIP, PTCH1.

Statistical Method of the Pathway Analysis
We applied the method of Wang et al. [11] to conduct the

pathway-based GWAS analysis. Specifically, we first calculated the

statistic value for the association of each SNP with BCC risk.

Then, we associated the SNPs located within 20 kb upstream or

downstream of gene transcript with each gene, and assigned the

highest statistical value among all the SNPs located in this region

as representative of this gene. All the genes were assigned to

pathways as previously defined. Then the association of each

pathway with BCC (denoted by Enrichment Score, ES) was

evaluated using the weighted Kolmogorov-Smirnov-like running

sum statistic, which reflects the overrepresentation of genes within

this pathway at the top of the entire ranked list of genes in the

genome. We used a permutation procedure (1,000 permutations,

permuting the case-control status and re-calculating the pathway-

based ES) to assess the significance of the statistical value. A

normalized enrichment score was calculated for each pathway to

allow direct comparison of pathways of different sizes. The false

discovery rate (FDR) was calculated to keep the proportion of

expected false positive findings below a certain threshold [17]. We

set the significance level for the pathway analysis as p value,0.05

and FDR,0.5. The detailed algorithm of pathway analysis was

described by Wang et al [11].

Results

Basic characteristics of the 1,797 BCC cases and 5,197 controls

in our study are presented in Table S1. As shown in the table, the

BCC cases were more likely to have red or blonde hair and

lifetime severe sunburns that blistered, and they tended to have

poorer ability to tan than the controls (Table S1).

Of the 740,760 genotyped SNPs, 366,550 SNPs located within

20 kb upstream or downstream of gene transcripts were assigned

to the genes. Among them, 115,688 SNPs were ultimately assigned

to 4,891 genes within the pre-defined pathways (107,521 SNPs to

4,538 genes in the KEGG pathways and 34,301 SNPs to 1,298

genes in the BioCarta pathways). A total of 174 KEGG pathways

and 205 BioCarta pathways that contained between 10 and 200

eligible genes were used for the pathway analysis.

Both of the positive control gene sets reached a nominal p-

value,0.05 (p = 0.001 for the pigmentation gene set and p =

0.03 for the BCC risk gene set). As shown in Table S2, 10 out of 12

genes in the pigmentation gene set had representative SNPs that

reached p value,0.05 for the association with BCC (range 0.02 to

3.4E-7, and the two that did not reach significance had p values of

0.05 and 0.09), and seven out of 13 genes in the BCC risk gene set

had SNPs with p value,0.05 (range 0.03 to 3.4E-7, and the

remaining six had p values from 0.11 to 0.16).

Besides the two positive control gene sets, 10 out of the 174

KEGG pathways and eight out of the 205 BioCarta pathways

reached a significance level of p,0.05, and four also reached a

FDR of less than 0.5. Those were the heparan sulfate biosynthesis

pathway (p = 0.007, FDR = 0.35), the mCalpain pathway (p =

0.002, FDR = 0.12), the Rho cell motility signaling pathway (p =

0.011, FDR = 0.30), and the nitric oxide pathway (p = 0.022,

FDR = 0.42, Table 1). Complete association results for all the

pathways in the KEGG database are listed in Table S3 (a), and

those in the BioCarta database are listed and Table S3 (b)).

Pathway Analysis for BCC GWAS
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Thirteen out of 19 genes in the heparan sulfate biosynthesis

pathway had SNPs with p-value for marginal effect on BCC risk

(PBCC),0.05; the same was true for 14 out of 24 genes in the

mCalpain pathway, 16 out of 32 genes in the Rho cell motility

signaling pathway, and 16 out of 30 genes in the nitric oxide

pathway. The representative SNP of each gene in the four

pathways that had PBCC,0.01 are listed in Table 1, and the

representative SNPs of all the genes in these pathways are listed in

Table S4.

According to the pathway definition in the BioCarta

database, there are some overlaps between the mCalpain

pathway (24 genes) and the other two pathways: 3 genes

(MYLK, MYL2 and TLN1) in the Rho cell motility signaling

pathway (32 genes); and 6 genes (PRKACG, PRKACB, PRKAR2B,

PRKAR1A, PRKAR1B, PRKAR2A) in the nitric oxide pathway (30

genes). After excluding the 3 genes shared between the

mCalpain pathway and the Rho cell motility signaling pathway,

the association obviously attenuated for both pathways (p =

0.04 and FDR = 0.61 for the mCalpain pathway, and p = 0.05

and FDR = 0.84 for the Rho cell motility signaling pathway).

The association remained similar after excluding the 6 genes

shared between the mCalpain pathway (p = 0.003 and FDR =

0.12) and the nitric oxide pathway (p = 0.04 and FDR = 0.76).

No other overlap was found among the remaining pathways. In

addition, based on the concern that the case-control status of

T2D and CHD may introduce potential bias to the associations

between the SNPs and BCC risk, a sensitivity analysis was

conducted by adjusting for the case-control status. As a result,

no substantial change was detected for the associations before

and after the adjustment.

Table 1. Pathways with significant enrichment in the BCC GWAS.

Database Pathway Gene Count1 FDR2
Pathway
Enrichment p-value

Genes with
PBCC,0.013 SNP4 SNP PBCC

KEGG Heparan sulfate
biosynthesis pathway

19 0.35 0.007 HS3ST3A1 rs8074072 1.93E-03

HS6ST2 rs7881124 2.37E-03

HS6ST3 rs8002510 3.43E-03

HS6ST1 rs11890277 5.43E-03

HS3ST1 rs1024034 6.45E-03

EXTL3 rs12544882 9.74E-03

EXT2 rs7950395 9.75E-03

BioCarta mCalpain pathway 24 0.18 0.002 ITGA1 rs1833556 2.69E-04

MYLK rs820455 8.99E-04

EGF rs6824594 9.55E-04

CAPNS2 rs4784549 6.13E-03

PXN rs11611541 7.07E-03

PRKACG rs1590944 8.31E-03

ITGB1 rs7079624 8.66E-03

BioCarta Rho cell motility
signalling pathway

32 0.30 0.011 MYLK rs820455 8.99E-04

ROCK1 rs1481280 9.06E-04

BAIAP2 rs9903763 1.44E-03

OPHN1 rs5965550 3.70E-03

PIP5K1B rs963707 4.37E-03

ACTR3 rs2279839 4.84E-03

ARHGEF1 rs11665965 5.40E-03

BioCarta Nitric oxide pathway 30 0.42 0.022 VEGFA rs13211073 4.54E-04

RYR2 rs2805434 9.35E-04

PRKG1 rs10762543 1.92E-03

BDKRB2 rs874284 4.73E-03

NOS3 rs3763486 7.79E-03

CHRM1 rs4592425 8.24E-03

PRKACG rs1590944 8.31E-03

TNNI1 rs6697016 8.70E-03

1The number of the genes with SNPs tested in BCC GWAS;
2Based on 1000 permutations, with 174 tested pathways for KEGG darabase and 205 tested pathways for Biocarta darabase;
3PBCC is p-value of SNP for BCC association. Only the genes whose representative SNPs reached PBCC,0.01 are listed here and the information of all enriched genes in the
four pathways are listed in Table S3;

4Representative SNP for each gene with the smallest PBCC.
doi:10.1371/journal.pone.0022760.t001

Pathway Analysis for BCC GWAS
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Discussion

Genome-wide association studies primarily focus on marginal

effects for individual markers. Given that some of the susceptibility

genes for a given disease share related functions, a pathway-based

approach that evaluates the cumulative contribution of the

functionally related genes can utilize GWAS data to a greater

extent. This method has recently shown its potential strength in

application to GWASs in several complex diseases [9,10,11,12].

Here we report the results of a pathway analysis to investigate the

GWAS associations for BCC. Gene-sets that contained pigmenta-

tion genes or BCC risk genes identified from previous GWASs were

significantly associated with BCC in our pathway analysis, which

suggests that the pathway-based approach can effectively incorpo-

rate the modest effects of genes with related functions. In addition,

we identified four other pathways significantly associated with BCC

risk as defined by the KEGG and BioCarta databases: the heparan

sulfate biosynthesis pathway, the mCalpain pathway, the Rho cell

motility signaling pathway, and the nitric oxide pathway.

The mCalpain pathway ranked first among the 205 BioCarta

pathways tested in this study (p = 0.002 and FDR = 0.18).

Calpain is a class of Ca2+-dependent cysteine proteases with two

major ubiquitously expressed isoforms: m-calpain (or calpain I) and

m-calpain (or calpain II). One of the most carefully studied

functions of the calpains is the regulation of integrin-mediated cell

migration [18]. mCalpain is believed to be membrane bound and

functions at the trailing edge of the migrating cell to cleave the

integrins in response to growth factor receptor signals [18,19],

which may play a role in the invasion of tumor cells into

surrounding stroma during the development of BCC. In addition

to cell migration, a number of protein substrates of calpains have

been identified as playing very important roles in cell proliferation,

apoptosis, and cell cycle control [20,21,22,23,24]. The assessed m-

calpain expression level appeared to be inversely correlated to

apoptotic activity in various cell types [20,25], and the over-

expression of m-calpain has been detected in human cancer [26].

To date, calpain inhibitors have been used widely to trigger

apoptosis in various cancer cell lines [27]. However, as for BCC,

only one study has reported that the expression of u-calpain in

BCCs was markedly elevated compared to normal human skin,

and no difference was found for m-calpain [28]. In our study,

although we detected only a weak association between the m-

calpain polymorphisms and BCC risk (representative p = 0.05), a

stronger association was identified for the m-calpain pathway,

which suggests that m-calpain has its effects through interaction

with other genes in the pathway.

The other two pathways associated with BCC risk in the

BioCarta database were the Rho cell motility signaling pathway

and the nitric oxide pathway. After excluding the genes shared

with the mCalpain pathway, the association for the Rho cell

motility signaling pathway became non-significant, suggesting that

the association was driven by the genes shared with the mCalpain

pathway. There is evidence from previous study that calpain

mediates integrin-induced signaling at a point upstream of Rho

family members [29]. It is certainly plausible that BCC

tumorigenesis requires the mCalpain pathway for local invasion

into the epidermis and through the basement membrane zone into

the dermis. Another plausible explanation is an integrin-mediated

immune response that requires adhesion of circulating anti-tumor

T cells to the dermal endothelial cells followed by migration of T

cells into tissues – an aberration of a T cell response to BCC may

allow the tumor to grow unabated in skin.

The association of the nitric oxide pathway remained significant

after excluding the genes shared with the mCalpain pathway,

which suggests an independent effect. Nitric oxide (NO) is a

signaling molecule that plays a critical role in vasodilatation,

neurotransmission and immunity, and has been shown to be

cytostatic or cytotoxic for cancer cells [30]. NO is also produced in

the skin and its associated microvasculature, and has complex

implications in skin homeostasis and diseases [31]. The NO

pathway in the BioCarta database focuses mainly on the sub-

network of NOS3. NOS3, also named as endothelial cell

constitutive NOS or eNOS, plays an important role in the

regulation of vascular endothelial function [32], and the expression

of NOS3 was reported to be down-regulated in basal cell

carcinomas when compared with normal skin [33]. A significant

association was also detected between NOS3 polymorphisms and

BCC risk in our study (representative p = 0.01). A characteristic

clinical feature of BCCs is a translucent papule or nodule with

prominent telangiectasia, presumably an angiogenic response

propagated by the growing skin cancer. A NOS-predominant

BCC may potentially be able to attract a risk blood supply for

continued growth and NOS (via NOS inhibitors) may be

considered a therapeutic target.

As for the KEGG pathways, the heparan sulfate biosynthesis

pathway was significantly associated with BCC risk (p = 0.007

and FDR = 0.35). Heparan sulfate (HS) is a glycosaminoglycan

covalently attached to serine residues in a proteoglycan core

protein. Heparan sulfate proteoglycans (HSPGs) have been known

to play vital roles in every step of tumor progression: allowing

cancer cells to proliferate, escape from immune response, invade

neighboring tissues, and metastasize to distant sites [34]. Several

cancers including melanoma have shown aberrant modulation of

several key HS biosynthetic enzymes [35,36,37,38]. However, no

study has been reported on BCC, and our finding suggests the

potential importance of this pathway in the etiology of BCC,

relevant in the case of nodular or morpheaform BCCs where

dermal invasion is commonly seen.

There are some limitations to our approach. First, current

knowledge on human gene functions is incomplete, and the pre-

defined pathways cannot comprehensively represent the function-

ally related genes in the human genome. We used the KEGG and

BioCarta pathways in this study, which represent relatively well-

defined known biological pathways. To minimize multiple-testing

concerns, we did not include some other pathway databases with

more broad functional categories such as the Gene Ontology (GO)

[39,40]. Secondly, the assignment of SNPs to genes in physical

proximity may not always be accurate. A gene may be regulated in

trans by genetic variants that are physically distant from the

structural gene [41]. Third, given the modest sample size, the

FDRs of the identified pathways are not particularly low. Further

replication using additional samples and functional investigation

would be required to illustrate the true effect behind these

pathways.

In conclusion, we applied a pathway-based approach to further

explore the GWAS data of BCC and identified several pathways

associated with BCC risk, which was missed in the traditional

GWAS. These findings may suggest new insights into the etiology

of BCC upon further replication. Functional studies are also

warranted to characterize the biological functions of these

pathways in BCC development.

Supporting Information

Table S1 Characteristics of BCC cases and controls in
this study.

(XLS)
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Table S2 The representative SNP information for the
two positive control pathways.
(XLS)

Table S3 Association results for the 174 KEGG path-
ways and 205 BioCarta pathways. (a) Association results for

the 174 KEGG pathways; (b) Association results for the 205

BioCarta pathways.

(XLS)

Table S4 The representative SNP information for the
four pathways with significant enrichment in the BCC
GWAS.
(XLS)

Methods S1 Description of the GWAS on BCC.
(DOC)
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