Reader Comments

Post a new comment on this article

Biochar to combat Climate Change

Posted by Anumakonda on 27 Apr 2014 at 10:54 GMT

Excellent post on Biochar.
Biochar is a name for charcoal when it is used for particular purposes, especially as a soil amendment. Like all charcoal, biochar is created bypyrolysis of biomass. Biochar is under investigation as an approach tocarbon sequestration to produce negative carbon dioxide emissions. Biochar thus has the potential to help mitigate climate change, via carbon sequestration. Independently, biochar can increase soil fertility, increase agricultural productivity, and provide protection against some foliar and soil-borne diseases. Furthermore, biochar reduces pressure onforests. Biochar is a stable solid, rich in carbon and can endure in soil for thousands of years.
Pyrolysis produces biochar, liquids, and gases from biomass by heating the biomass in a low/no oxygen environment. The absence of oxygen prevents combustion. The relative yield of products from pyrolysis varies with temperature. Temperatures of 400–500 °C (752–932 °F) produce more char, while temperatures above 700 °C (1,292 °F) favor the yield of liquid and gas fuel components. Pyrolysis occurs more quickly at the higher temperatures, typically requiring seconds instead of hours. High temperature pyrolysis is also known asgasification, and produces primarily syngas. Typical yields are 60% bio-oil, 20% biochar, and 20% syngas. By comparison, slow pyrolysis can produce substantially more char (~50%). Once initialized, both processes produce net energy. For typical inputs, the energy required to run a “fast” pyrolyzer is approximately 15% of the energy that it outputs. Modern pyrolysis plants can use the syngas created by the pyrolysis process and output 3–9 times the amount of energy required to run.
The Amazonian pit/trench method harvests neither bio-oil nor syngas, and releases a large amount of CO2, black carbon, and other greenhouse gases (GHG)s (and potentially, toxins) into the air. Commercial-scale systems process agricultural waste, paper byproducts, and even municipal waste and typically eliminate these side effects by capturing and using the liquid and gas products.

The burning and natural decomposition of biomass and in particular agricultural waste adds large amounts of CO
2 to the atmosphere. Biochar that is stable, fixed, and 'recalcitrant' carbon can store large amounts of greenhouse gases in the ground for centuries, potentially reducing or stalling the growth in atmospheric greenhouse gas levels; at the same time its presence in the earth can improve water quality, increase soil fertility, raise agricultural productivity, and reduce pressure on old-growth forests.
Biochar can sequester carbon in the soil for hundreds to thousands of years, like coal. Such a carbon-negative technology would lead to a net withdrawal of CO2 from the atmosphere, while producing and consuming energy”. This technique is advocated by prominent scientists such as James Hansen, head of the NASA Goddard Institute for Space Studies, and James Lovelock, creator of the Gaia hypothesis, for mitigation of global warming bygreenhouse gas remediation.[25]
Researchers have estimated that sustainable use of biocharring could reduce the global net emissions of carbon dioxide (CO
2), methane, and nitrous oxide by up to 1.8 Pg CO
2-C equivalent (CO
2-Ce) per year (12% of current anthropogenic CO
2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of the next century by 130 Pg CO
2-Ce, without endangering food security, habitat, or soil conservation.
Biochar is a high-carbon, fine-grained residue which today is produced through modern pyrolysis processes. Pyrolysis is the direct thermal decomposition of biomass in the absence of oxygen to obtain an array of solid (biochar), liquid (bio-oil), and gas (syngas) products. The specific yield from the pyrolysis is dependent on process conditions, and can be optimized to produce either energy or biochar.

Biochar is a desirable soil material in many locations due to its ability to attract and retain water. This is possible because of its porous structure and high surface area. As a result, nutrients, phosphorus, and agrochemicals are retained for the plants benefit. Plants therefore, are healthier and fertilizers leach less into surface or groundwater.
Bio-oil can be used as a replacement for numerous applications where fuel oil is used, including fueling space heaters, furnaces, and boilers. Additionally, these biofuels can be used to fuel some combustion turbines and reciprocating engines, and as a source to create several chemicals. If bio-oil is used without modification, care must be taken to prevent emissions of black carbon and other particulates. Syngas and bio-oil can also be “upgraded” to transportation fuels such as biodiesel and gasoline substitutes. If biochar is used for the production of energy rather than as a soil amendment, it can be directly substituted for any application that uses coal. Pyrolysis also may be the most cost-effective way of producing electrical energy from biomaterial.[ Syngas can be burned directly, used as a fuel for gas engines and gas turbines, converted to clean diesel fuel through the Fischer–Tropsch process, or potentially used in the production of methanoland hydrogen.
Bio-oil has a much higher energy density than the raw biomass material. Mobile pyrolysis units can be used to lower the costs of transportation of the biomass if the biochar is returned to the soil and the syngas stream is used to power the process. Bio-oil contains organic acids that are corrosive to steel containers, has a high water vapor content that is detrimental to ignition, and, unless carefully cleaned, contains some biochar particles which can block injectors. The greatest potential for bio-oil seems to be its use in a bio-refinery, where compounds that are valuable chemicals, pesticides, pharmaceuticals, or food additives are first extracted, and the remainder is either upgraded to fuel or reformed to syngas.
• The pyrolysis of forest- or agriculture-derived biomass residue generates a biofuel without competition with crop production.
• Biochar is a pyrolysis byproduct that may be ploughed into soils in crop fields to enhance their fertility and stability, and for medium- to long-term carbon sequestration in these soils.
• Biochar enhances the natural process: the biosphere captures CO
2, especially through plant production, but only a small portion is stably sequestered for a relatively long time (soil, wood, etc.).
• Biomass production to obtain biofuels and biochar for carbon sequestration in the soil is a carbon-negative process, i.e. more CO
2 is removed from the atmosphere than released, thus enabling long-term sequestration.
Dr.A.Jagadeesh Nellore(AP),India

No competing interests declared.